Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Recurring headaches are an uncommon symptom, also tending to occur only in cases of larger tumors.
Larger tumors can press on the trigeminal nerve (CN V), causing facial numbness and tingling - constantly or intermittently. The facial nerve (CN VII) is rarely affected in the same way; however, due to its proximity to some structures of the inner and middle ear, it can be damaged during radiological treatment or surgical removal of the tumor, particularly in the case of large growths.
At the time some people learn they have an acoustic neuroma, they are also told that this tumor may involve the nerve that controls facial movement. However, it is much more common for treatment, rather than the tumor itself, to damage this nerve, leading to weakness or paralysis of the face. Taste, a sensation that reflects accurately sweet, sour, bitter and bland, is also a function of the facial nerve. Should any of the cranial nerves be damaged or need to be cut during surgery, it is sometimes possible for a neurosurgeon to microsuture the ends together; however, this is a new and very delicate specialist procedure, where long recovery times, incomplete healing and some permanent loss of function are to be expected.
Tumors within the nerve canaliculi initially present with unilateral sensorineural hearing loss, unilateral tinnitus, or disequilibrium (vertigo is rare, on account of the slow growth of neuromas). Speech discrimination out of proportion to hearing loss, difficulty talking on the telephone are frequent accompaniments. Tumors extending into the CPA will likely present with disequilibrium or ataxia depending on the amount of extension on the brainstem. With brainstem extension, midfacial and corneal hypesthesia, hydrocephalus, and other cranial neuropathies become more prevalent.
For example, involvement of CN V from a cerebellopontine mass lesion often results in loss of the ipsilateral (same side of the body) corneal reflex (involuntary blink).
Patients with larger tumours can develop Bruns nystagmus ('dancing eyes') due to compression of the flocculi.
There are several signs and symptoms of the eye that can indicate the growth of a tumor, which include:
- White or reddening pupil
- Eye enlargement or bulging
- Redness or irritation
- Visual disturbances
- Vision loss or changes
- Drooping eyelid.
Many of the symptoms of schwannomatosis overlap with NF2.
- Schwannomas occur instead of the neurofibromas that are hallmarks of neurofibromatosis Type 1 (NF1).
- Multiple schwannomas manifest throughout the body or in isolated regions.
- The schwannomas develop on cranial, spinal and peripheral nerves.
- Chronic pain, and sometimes numbness, tingling and weakness.
- About 1/3 of patients have segmental schwannomatosis, which means that the schwannomas are limited to a single part of the body, such as an arm, a leg or the spine.
- There are several cases where people with schwannomatosis have developed a vestibular schwannoma (acoustic neuroma). An acoustic neuroma is a schwannoma on the vestibular nerve in the brain. This nerve is involved in hearing and patients with vestibular schwannomas experience hearing loss. However, bilateral vestibular schwannomas (vestibular schwannomas on both sides of the brain) do not occur in schwannomatosis. Juvenile vestibular tumors do not occur either.
- Patients with schwannomatosis do not have learning disabilities related to the disease.
- Symptoms are sometimes brought on by hormonal changes such as puberty and pregnancy.
A schwannoma is a usually-benign nerve sheath tumor composed of Schwann cells, which normally produce the insulating myelin sheath covering peripheral nerves.
Subsequent to diagnosis of sensorineural hearing loss, and differential diagnosis of retrocochlear or neural etiologies,
radiological assessment of the CPA is performed to assess the presence of anatomical retrocochlear lesions.
Schwannomas are homogeneous tumors, consisting only of Schwann cells. The tumor cells always stay on the outside of the nerve, but the tumor itself may either push the nerve aside and/or up against a bony structure (thereby possibly causing damage). Schwannomas are relatively slow-growing. For reasons not yet understood, schwannomas are mostly benign and less than 1% become malignant, degenerating into a form of cancer known as neurofibrosarcoma. These masses are generally contained within a capsule, and so surgical removal is often successful.
Schwannomas can be associated with neurofibromatosis type II, which may be due to a loss-of-function mutation in the protein merlin. They are universally S-100 positive, which is a marker for cells of neural crest cell origin.
Schwannomas of the head and neck are a fairly common occurrence and can be found incidentally in 3–4% of patients at autopsy. Most common of these is a vestibular schwannoma, a tumor of the vestibulocochlear nerve that may lead to tinnitus and hearing loss on the affected side. Outside the cranial nerves, schwannomas may present on the flexor surfaces of the limbs. Rare occurrences of these tumors in the penis have been documented in the literature.
Verocay bodies are seen histologically in schwannomas.
Intraocular Schwannoma, also termed uveal schwannoma, is a type of schwannoma found in the eye. These tumors are almost always benign in nature and while malignant forms have been documented in other areas of the body, this has not been reported in the uveal region. Composed of Schwann cells, these masses are generally slow growing and can be found in the peripheral nerve tract, often around the head and neck.
The symptoms of choroid plexus carcinoma are similar to those of other brain tumors. They include:
- Persistent or new onset headaches
- Macrocephaly or bulging fontanels in infants.
- Loss of appetite (refusal to take food in infants)
- Papilledema
- Nausea and emesis
- Ataxia
- Strabismus
- Developmental delays
- Altered mental status
The symptoms of brain stem tumors vary greatly and can include ataxia, cranial nerve palsy, headaches, problems with speech and swallowing, hearing loss, weakness, hemiparesis, vision abnormalities, ptosis, and behavioral changes. Another possible symptom is vomiting. Headaches related to brainstem tumors may be worse shortly after waking up in the morning.
Neurofibromatosis type II (also known as MISME syndrome - multiple inherited schwannomas, meningiomas, and ependymomas) is a genetic condition which may be inherited or may arise spontaneously. The main manifestation of the condition is the development of symmetric, benign brain tumors in the region of the cranial nerve VIII, which is the "auditory-vestibular nerve" that transmits sensory information from the inner ear to the brain. Many people with this condition also experience visual problems. NF II is caused by mutations of the "Merlin" gene, which seems to influence the form and movement of cells. The principal treatments consist of neurosurgical removal of the tumors and surgical treatment of the eye lesions. Historically the underlying disorder has not had any therapy due to the cell function caused by the genetic mutation. However, new drug research and some clinical trials have shown some promise in having beneficial effects. Collaborative research to find better treatments is ongoing, such as the work of the Synodos NF-2 Consortium of scientists.
An MRI is better than a CT scan when a brainstem tumor is in the differential diagnosis.
Ferner et al. give the following diagnostic criteria for Schwannomatosis:
- Definite
- Age >30 years and ≥2 nonintradermal schwannomas, at least one with histologic confirmation and no evidence of vestibular tumor on MRI scan and no known NF mutation, or
- One nonvestibular schwannoma plus a first-degree relative with schwannomatosis
- Possible
- Age <30 and ≥2 nonintradermal schwannomas, at least one with histologic confirmation and no evidence of vestibular tumor on MRI scan and no known NF mutation, or
- Age >45 and ≥2 nonintradermal schwannomas, at least one with histologic confirmation and no symptoms of 8th nerve dysfunction and no NF2, or
- Nonvestibular schwannoma and first-degree relative with schwannomatosis
- Segmental. Diagnosed as definite or possible but limited to one limb or ≤5 contiguous segments of spine.
Another set of criteria are:
- Two or more nonintradermal (cutaneous) schwannomas
- No evidence of vestibular tumor
- No known NF-2 mutation
or
- One pathologically confirmed nonvestibular schwannoma plus a first degree relative who meets the above criteria.
Neurofibromatosis (NF1) in early life may cause learning and behavior problems – about 60% of children who have NF1 have a mild form of difficulty in school. In terms of signs the individual might have are the following:
- Six or more light brown dermatological spots ("café au lait spots")
- At least two neurofibromas
- At least two growths on the eye's iris
- Abnormal growth of the spine (scoliosis)
Ferner et al. give three sets of diagnostic criteria for NF2:
1. Bilateral vestibular schwannoma (VS) or family history of NF2 plus Unilateral VS or any two of: meningioma, glioma, neurofibroma, schwannoma, posterior subcapsular lenticular opacities
2. Unilateral VS plus any two of meningioma, glioma, neurofibroma, schwannoma, posterior subcapsular lenticular opacities
3. Two or more meningioma plus unilateral VS or any two of glioma, schwannoma and cataract.
Another set of diagnostic criteria is the following:
- Detection of bilateral acoustic neuroma by imaging-procedures
- First degree relative with NF II and the occurrence of neurofibroma, meningiomas, glioma, or Schwannoma
- First degree relative with NF II and the occurrence of juvenile posterior subcapsular cataract.
The criteria have varied over time.
3 affected domains of neurological function:
- Cerebral hemisphere (15%)
- Cranial Nerves (35%)
- Spinal cord and roots (60%)
Signs reported
- headache
- mental status change
- confusion
- cognitive impairment
- seizures
- hemiparesis
- gait instability
Other symptoms that are less common are dementia, autonomic dysfunction, cranial nerve abnormalities, spinal symptoms such as limb weakness and paresthesia, and bowel and bladder dysfunction. Diplopia is the most common symptom of cranial nerve dysfunction. Trigeminal sensory or motor loss, cochlear dysfunction, and optic neuropathy are also common findings. Spinal signs and symptoms include weakness, dermatomal or segmental sensory loss, and pain in the neck, back, or following radicular patterns.
Jacod Syndrome is commonly associated with a tumor of the middle cranial fossa (near the apex of the orbit); but it can have several other causes.
The most common symptom of the papillary tumor is a headache. Because headaches are so common, most people think nothing of it. This is why brain tumors are so dangerous. There are not a lot of symptoms that go along with them so people tend to wait a long time before seeking medical help. Most of the time people will go see a doctor when their headaches become consistent and start to never go away. This symptom however occurs secondary to hydrocephalus, which is a result from compression of the cerebral aqueduct. The cerebral aqueduct is a narrow channel in the midbrain, which connects the third and fourth ventricles. When a tumor blocks the pathway of the cerebrospinal fluid, this will cause headaches in the patient. Often when hydrocephalus occurs, a shunt is put in place in order to alleviate the pressure. In one case study, an endoscopic third ventriculostomy was performed as a first line procedure to treat the hydrocephalus and also for diagnostic purposes.
In some cases, patients have had progressive diplopia, or double vision. Also, although not in all cases, patients sometimes suffer from nausea and vomiting.
Diagnostic methods vary, and are based on specific possible etiologies; however, an X-ray computed tomography scan of the face (or magnetic resonance imaging, or both) may be helpful.
Signs and symptoms are mainly due to secondary increased intracranial pressure due to blockage of the fourth ventricle and are usually present for 1 to 5 months before diagnosis is made. The child typically becomes listless, with repeated episodes of vomiting, and a morning headache, which may lead to a misdiagnosis of gastrointestinal disease or migraine. Soon after, the child will develop a stumbling gait, truncal ataxia, frequent falls, diplopia, papilledema, and sixth cranial nerve palsy. Positional dizziness and nystagmus are also frequent, and facial sensory loss or motor weakness may be present. Decerebrate attacks appear late in the disease.
Extraneural metastasis to the rest of the body is rare, and when it occurs, it is in the setting of relapse, more commonly in the era prior to routine chemotherapy.
Small tumors (e.g., < 2.0 cm) usually are incidental findings at autopsy without having caused symptoms. Larger tumors may cause symptoms, depending on the size and location.
- Focal seizures may be caused by meningiomas that overlie the cerebrum.
- Progressive spastic weakness in legs and incontinence may be caused by tumors that overlie the parasagittal frontoparietal region.
- Tumors of the Sylvian aqueduct may cause myriad motor, sensory, aphasic, and seizure symptoms, depending on the location.
- Increased intracranial pressure eventually occurs, but is less frequent than in gliomas.
- Diplopia (Double vision) or uneven pupil size may be symptoms if related pressure causes a third and/or sixth nerve palsy.
In most cases, symptoms of NF1 are mild, and individuals live normal and productive lives. In some cases, however, NF1 can be severely debilitating and may cause cosmetic and psychological issues. The course of NF2 varies greatly among individuals. In some cases of NF2, the damage to nearby vital structures, such as other cranial nerves and the brain stem, can be life-threatening. Most individuals with schwannomatosis have significant pain. In some extreme cases the pain will be severe and disabling.
A tumor compressing the facial nerve anywhere along its complex pathway can result in facial paralysis. Common culprits are facial neuromas, congenital cholesteatomas, hemangiomas, acoustic neuromas, parotid gland neoplasms, or metastases of other tumours.
Often, since facial neoplasms have such an intimate relationship with the facial nerve, removing tumors in this region becomes perplexing as the physician is unsure how to manage the tumor without causing even more palsy. Typically, benign tumors should be removed in a fashion that preserves the facial nerve, while malignant tumors should always be resected along with large areas of tissue around them, including the facial nerve. While this will inevitably lead to heightened paralysis, safe removal of a malignant neoplasm is worth the often treatable palsy that follows. In the best case scenario, paralysis can be corrected with techniques including hypoglossal-facial nerve anastomosis, end-to-end nerve repair, cross facial nerve grafting, or muscle transfer/transposition techniques, such as the gracilis free muscle transfer.
Patients with facial nerve paralysis resulting from tumours usually present with a progressive, twitching paralysis, other neurological signs, or a recurrent Bell's palsy-type presentation.
The latter should always be suspicious, as Bell's palsy should not recur. A chronically discharging ear must be treated as a cholesteatoma until proven otherwise; hence, there must be immediate surgical exploration. Computed tomography (CT) or magnetic resonance (MR) imaging should be used to identify the location of the tumour, and it should be managed accordingly.
Other neoplastic causes include leptomeningeal carcinomatosis.
Vision deficit usually occurs when lesions grow in the occipital lobe of the brain, causing a blurred daze for patients, especially in sensitivity to light. Focusing upon finer objects becomes a challenge, along with edge and border detection. Driving behind the wheel is dangerous when astroblastoma grows in residual tissue size, since peripheral vision can be insufficient. Horizontal nystagmus and other involuntary eye disorders can occur.