Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
PDP has a number of visible symptoms. Most important clinical features are: pachydermia (thickening and wrinkling of the skin), furrowing of the face and scalp, periostosis (swelling of periarticular tissue and shaggy periosteal new bone formation of long bones) and digital clubbing (enlargement of fingertips). Other features include excessive sweating, arthralgia and gastrointestinal abnormalities. An overview of all symptoms is provided in table 2.
Table 2. Overview of symptoms
Melorheostosis is a mesenchymal dysplasia manifesting as regions of dripping wax appearance or flowing candle wax appearance. It is thought to be caused by a mutation of the LEMD3 gene. The disorder can be detected by radiograph due to thickening of bony cortex resembling "dripping candle wax". It is included on the spectrum of developmental bone dysplasias including pycnodysostosis and osteopoikilosis. The disorder tends to be unilateral and monostotic (i.e. affecting a single bone), with only one limb typically involved. Cases with involvement of multiple limbs, ribs, and bones in the spine have also been reported. There are no reported cases of involvement of skull or facial bones. Melorheostosis can be associated with pain, physical deformity, skin and circulation problems, contractures, and functional limitation. It is also associated with a benign inner ear dysplasia known as osteosclerosis.
It is not known if LEMD3 mutations can cause isolated melorheostosis in the absence of Buschke-Ollendorff syndrome.
HME can cause pain to people of all ages. To children, this can be especially painful. During exercise, it can cause a significant amount of pain. Exostoses may be visible to naked eye from outside. Multiple deformities, as mentioned above, can be present. The Exotoses appear to slow their rate of growth when they reach a certain, variable mass.
It is characterized by the growth of cartilage-capped benign bone tumours around areas of active bone growth, particularly the metaphysis of the long bones. Typically five or six exostoses are found in upper and lower limbs. Most common locations are:
- Distal femur (70%)
- Proximal tibia (70%)
- Humerus (50%)
- Proximal fibula (30%)
HME can lead to the shortening and bowing of bones; affected individuals often have a short stature. Depending on their location the exostoses can cause the following problems: pain or numbness from nerve compression, vascular compromise, inequality of limb length, irritation of tendon and muscle, Madelung's deformity as well as a limited range of motion at the joints upon which they encroach. A person with HME has an increased risk of developing a rare form of bone cancer called chondrosarcoma as an adult. Problems may be had in later life and these could include weak bones and nerve damage. The reported rate of transformation ranges from as low as 0.57% to as high as 8.3% of people with HME.
Craniomandibular osteopathy, also known as lion's jaw, is a developmental disease in dogs causing extensive bony changes in the mandible and skull. In this disease, a cyclical resorption of normal bone and replacement by immature bone occurs along the inner and outer surfaces of the affected bones. It usually occurs between the ages of 3 and 8 months. Breeds most commonly affected include the West Highland White Terrier, Scottish Terrier, Cairn Terrier, and Boston Terrier. It is rare in large-breed dogs, but it has been reported. Symptoms include firm swelling of the jaw, drooling, pain, and difficulty eating.
It is an inherited disease, especially in Westies, in which it has been recognized as an autosomal recessive trait. Canine distemper has also been indicated as a possible cause, as has "E. coli" infection, which could be why it is seen occasionally in large-breed dogs. Growth of lesions will usually stop around the age of one year, and possibly regress. This timing coincides with the normal completion of endochondral bone growth and ossification. If the disease is extensive, especially around the tympanic bulla (middle ear), then the prognosis is guarded.
A similar disease seen in young Bullmastiffs is known as calvarial hyperostotic syndrome. It is also similar to human infantile cortical hyperostosis. It is characterized by irregular, progressive bony proliferation and thickening of the cortical bone of the calvaria, which is part of the skull. Asymmetry of the lesions may occur, which makes it different from craniomandibular osteopathy. Symptoms include painful swelling of the skull, fever, and lymph node swelling. In most cases it is self-limiting.
Pachydermoperiostosis (PDP) or primary hypertrophic osteoarthropathy (PHO) is a rare genetic disorder that affects both bones and skin. Other names are idiopathic hypertrophic osteoarthropathy or Touraine-Solente-Golé syndrome. It is mainly characterized by pachydermia (thickening of the skin), periostosis (excessive bone formation) and finger clubbing (swelling of tissue with loss of normal angle between nail and nail bed).
This disease affects relatively more men than women. After onset, the disease stabilizes after about 5–20 years. Life of PDP patients can be severely impaired. Currently, symptomatic treatments are NSAIDs and steroids or surgical procedures.
In 1868, PDP was first described by Friedreich as ‘excessive growth of bone of the entire skeleton’. Touraine, Solente and Golé described PDP as the primary form of bone disease hypertrophic osteoarthropathy in 1935 and distinguished its three known forms.
Collagen improperly formed, enough collagen is made but it is defective.
- Bones fracture easily, sometimes even before birth
- Bone deformity, often severe
- Respiratory problems possible
- Short stature, spinal curvature and sometimes barrel-shaped rib cage
- Triangular face
- Loose joints (double-jointed)
- Poor muscle tone in arms and legs
- Discolouration of the sclera (the 'whites' of the eyes are blue)
- Early loss of hearing possible
Type III is distinguished among the other classifications as being the "progressive deforming" type, wherein a neonate presents with mild symptoms at birth and develops the aforementioned symptoms throughout life. Lifespans may be normal, albeit with severe physical handicapping.
Melorheostosis is a medical developmental disorder and mesenchymal dysplasia in which the bony cortex widens and becomes hyperdense in a sclerotomal distribution. The condition begins in childhood and is characterized by thickening of the bones. Pain is a frequent symptom and the bone can have the appearance of dripping candle wax.
Collagen is not of a sufficient quality or quantity.
- Most cases die within the first year of life due to respiratory failure or intracerebral hemorrhage
- Severe respiratory problems due to underdeveloped lungs
- Severe bone deformity and small stature
Type II can be further subclassified into groups A, B, and C, which are distinguished by radiographic evaluation of the long bones and ribs. Type IIA demonstrates broad and short long bones with broad and beaded ribs. Type IIB demonstrates broad and short long bones with thin ribs that have little or no beading. Type IIC demonstrates thin and longer long bones with thin and beaded ribs.
The most prominent and extensively documented findings of Weismann-Netter-Stuhl syndrome are on plain radiographs of the bones. Findings include bilateral and symmetric anterior bowing of both tibiae and fibulae, lateral bowing of the tibiae, femoral bowing, and squaring of iliac and pelvis bones.
Léri–Weill dyschondrosteosis or LWD is a rare pseudoautosomal dominant genetic disorder which results in dwarfism with short forearms and legs (mesomelic dwarfism) and a bayonet-like deformity of the forearms (Madelung's deformity).
Weismann-Netter-Stuhl syndrome, also known as Weismann-Netter Syndrome or more technically by the term tibioperoneal diaphyseal toxopachyosteosis, is a rare disorder characterized by bowing of the lower legs and an abnormal thickening of thinner bone in the leg.
The main sign is anterior bowing and posterior cortical thickening of the diaphyses of both the tibiae and fibulae. It is thought to be inherited in an autosomal dominant fashion, and is most often bilateral and symmetric in nature. Associated features include dwarfism and mild intellectual disability, as well as a process known as tibialization of the fibulae, which involves thickening and enlargement of these bones to an extent resembling the tibiae. The combination of the presence of tibialization of the fibulae, which is highly specific for the disorder, and the absence of laboratory abnormalities ruling out alternative diagnoses including rickets, essentially confirms the diagnosis.
Pachyosteosclerosis is a combination of thickening (pachyostosis) and densification (osteosclerosis) of bones. It makes bones more heavy, but also more fragile. The condition often occurs in aquatic vertebrates, especially those living in shallow waters, creating ballast as an adaptation for maintaining neutral buoyancy and horizontal trim. It is in no way pathological. To resist roll, it frequently is found especially in ventral bones, whereas concentration near the lungs helps in maintaining trim.
Examples of animals showing pachyosteosclerosis are seacows (dugongs and manatees), the extinct Plesiosauria and Mesosauria and extinct aquatic sloths.
It can result from syphilis, yaws, Paget's disease of bone, Vitamin D deficiency, or Weismann-Netter-Stuhl syndrome.
It can be due to osteomalacia
An affected infant typically has the following triad of signs and symptoms: soft-tissue swelling, bone lesions, and irritability. The swelling occurs suddenly, is deep, firm, and may be tender. Lesions are often asymmetric and may affect several parts of the body. Affected bones have included the mandible, tibia, ulna, clavicle, scapula, ribs, humerus, femur, fibula, skull, ilium, and metatarsals. When the mandible (lower jaw bone) is affected, infants may refuse to eat, leading to failure to thrive.
Newborns with harlequin-type ichthyosis present with thick, fissured armor-plate hyperkeratosis. Sufferers feature severe cranial and facial deformities. The ears may be very poorly developed or absent entirely, as may the nose. The eyelids may be everted (ectropion), which leaves the eyes and the area around them very susceptible to infection. Babies with this condition often bleed during birth. The lips are pulled back by the dry skin (eclabium). Joints are sometimes lacking in movement, and may be below the normal size. Hypoplasia is sometimes found in the fingers. Polydactyly has also been found on occasion. In addition, the fish mouth appearance, mouth breathing, and xerostomia place affected individuals at extremely high risk for developing rampant dental decay.
Patients with this condition are extremely sensitive to changes in temperature due to their hard cracked skin, which prevents normal heat loss. Respiration is also restricted by the skin, which impedes the chest wall from expanding and drawing in enough air. This can lead to hypoventilation and respiratory failure. Patients are often dehydrated, as their plated skin is not well suited to retaining water.
While the definitive presentation of the disease is a patient having bowed lower limbs and sex reversal in 46,XY males, there are other clinical criteria that can be used, absent these characteristics, to make the diagnosis. Patients may present with underdeveloped shoulder blades, shortened and angulated lower limbs, a vertically oriented and narrow pelvis, an enlarged head, an undersized jaw, cleft palate, flat nasal bridge, low set ears, club feet, dislocated hips, 11 pairs of ribs instead of 12, or bone abnormalities in the neck and spine. Respiratory distress can be caused by an underdeveloped trachea which collapses on inhalation or by insufficient rib cage development.
Bowing of one or both legs that may:
- Be rapidly progressive
- Appear asymmetric
- Primarily occur just below the knee
Campomelic dysplasia (CMD) is a rare genetic disorder characterized by bowing of the long bones and many other skeletal and extraskeletal features.
It is frequently lethal in the neonatal period due to respiratory insufficiency, but the severity of the disease is variable, and some patients survive into adulthood.
The name is derived from the Greek roots "campo" (or "campto"), meaning bent, and "melia", meaning limb.
An unusual aspect of the disease is that up to two-thirds of affected 46,XY genotypic males display a range of Disorders of Sexual Development (DSD) and genital ambiguities or may even develop as normal phenotypic females as in complete 46 XY sex reversal.
An atypical form of the disease with absence of bowed limbs is called, prosaically, acampomelic campomelic dysplasia (ACD) and is found in about 10% of patients, particularly those surviving the neonatal period.
Hematologic manifestations related to bone marrow suppression and subsequent pancytopenia are a major source of morbidity and mortality. Additionally extramedullary hematopoiesis can result in liver and spleen dysfunction. Cranial nerve dysfunction and neurologic complications are usually associated with infantile osteopetrosis. Expansion of the skull bone leads to macrocephaly. Additionally, linear growth retardation that is not apparent at birth, delayed motor milestones and poor dentition can occur.
Failure to treat Blount's disease may lead to progressive deformity.Blount's disease may come back after surgery, especially in younger children. Because of the bowing, a leg-length discrepancy may result. This may result in disability if the discrepancy is significant (greater than 1 inch) and is not treated.
Despite this excess bone formation, people with osteopetrosis tend to have bones that are more brittle than normal. Mild osteopetrosis may cause no symptoms, and present no problems.
However, serious forms can result in...
- Stunted growth, deformity, and increased likelihood of fractures
- Patients suffer anemia, recurrent infections, and hepatosplenomegaly due to bone expansion leading to bone marrow narrowing and extramedullary hematopoiesis
- It can also result in blindness, facial paralysis, and deafness, due to the increased pressure put on the nerves by the extra bone
- Abnormal cortical bone morphology
- Abnormal form of the vertebral bodies
- Abnormality of temperature regulation
- Abnormality of the ribs
- Abnormality of vertebral epiphysis morphology
- Bone pain
- Cranial nerve paralysis
- Craniosynostosis
- Hearing impairment
- Hypocalcemia
Osteosclerosis is a disorder that is characterized by abnormal hardening of bone and an elevation in bone density. It may predominantly affect the medullary portion and/or cortex of bone. Plain radiographs are a valuable tool for detecting and classifying osteosclerotic disorders. It can manifest in localized or generalized osteosclerosis. Localized osteosclerosis can be caused by Legg–Calvé–Perthes disease, sickle-cell disease and osteoarthritis among others. Osteosclerosis can be classified in accordance with the causative factor into acquired and hereditary.
Malignant infantile osteopetrosis, also known as infantile autosomal recessive osteopetrosis or simply infantile osteopetrosis is a rare osteosclerosing type of skeletal dysplasia that typically presents in infancy and is characterized by a unique radiographic appearance of generalized hyperostosis - excessive growth of bone.
The generalized increase in bone density has a special predilection to involve the medullary portion with relative sparing of the cortices. Obliteration of bone marrow spaces and subsequent depression of the cellular function can result in serious hematologic complications. Optic atrophy and cranial nerve damage secondary to bony expansion can result in marked morbidity. The prognosis is extremely poor in untreated cases. Plain radiography provides the key information to the diagnosis. Clinical and radiologic correlations are also fundamental to the diagnostic process, with additional gene testing being confirmatory.
Hook nail is a bowing of the nail bed due to a lack of support from the short bony phalanx.