Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A defect in the ostium primum is occasionally classified as an atrial septal defect, but it is more commonly classified as an atrioventricular septal defect
Historically, the term mitral valve prolapse syndrome has been applied to MVP associated with palpitations, atypical chest pain, dyspnea on exertion, low body mass index, and electrocardiogram abnormalities in the setting of anxiety, syncope, low blood pressure, and other signs suggestive of autonomic nervous system dysfunction.
Occasionally, supraventricular arrhythmias observed in MVP are associated with increased parasympathetic tone.
Upon auscultation of an individual with mitral valve prolapse, a mid-systolic click, followed by a late systolic murmur heard best at the apex is common. The length of the murmur signifies the time period over which blood is leaking back into the left atrium, known as regurgitation. A murmur that lasts throughout the whole of systole is known as a holo-systolic murmur. A murmur that is mid to late systolic, although typically associated with less regurgitation, can still be associated with significant hemodynamic consequences.
In contrast to most other heart murmurs, the murmur of mitral valve prolapse is accentuated by standing and valsalva maneuver (earlier systolic click and longer murmur) and diminished with squatting (later systolic click and shorter murmur). The only other heart murmur that follows this pattern is the murmur of hypertrophic cardiomyopathy. A MVP murmur can be distinguished from a hypertrophic cardiomyopathy murmur by the presence of a mid-systolic click which is virtually diagnostic of MVP. The handgrip maneuver diminishes the murmur of an MVP and the murmur of hypertrophic cardiomyopathy. The handgrip maneuver also diminishes the duration of the murmur and delays the timing of the mid-systolic click.
Both valsalva maneuver and standing decrease venous return to the heart thereby decreasing left ventricular diastolic filling (preload) and causing more laxity on the chordae tendineae. This allows the mitral valve to prolapse earlier in systole, leading to an earlier systolic click (i.e. closer to S), and a longer murmur.
At birth, the ductus arteriosus is still open, and there is higher than normal resistance to blood flow in the lungs. This allows for adequate oxygenation via mixing between the atria and a normal appearance at birth. When the ductus begins to close and pulmonary vascular resistance decreases, blood flow through the ductus is restricted and flow to the lungs is increased, reducing oxygen delivery to the systemic circulation. This results in cyanosis and respiratory distress which can progress to cardiogenic shock. The first symptoms are cyanosis that does not respond to oxygen administration or poor feeding. Peripheral pulses may be weak and extremities cool to the touch.
HLHS often co-occurs with low birth weight and premature birth.
In neonates with a small atrial septal defect, termed "restrictive", there is inadequate mixing of oxygenated and deoxygenated blood. These neonates quickly decompensate and develop acidosis and cyanosis.
On EKG, right axis deviation and right ventricular hypertrophy are common, but not indicative of HLHS. Chest x-ray may show a large heart (cardiomegaly) or increased pulmonary vasculature. Neonates with HLHS do not typically have a heart murmur, but in some cases, a pulmonary flow murmur or tricuspid regurgitation murmur may be audible.
Co-occurring tricuspid regurgitation or right ventricular dysfunction can cause hepatomegaly to develop.
On ECG superior axis deviation is generally found in primum ASD, but an RSR pattern (M pattern) in V1 is characteristic. Fixed splitting of the second heart sound occurs because of equal filling of the left and right atria during all phases of the respiratory cycle.
Patients with Atrial Septal Defects may have Atrial Fibrillation, Atrial Tachycardia, or Atrial Flutter, but these arrythmias are not usually seen until patients grow older. Features also seen on the EKG include Right Atrial Enlargement, PR prolongation and advanced AV block. When you suspect a patient has an ASD based on the findings of an incomplete Right Bundle Branch Block with a rSr' or rSR' the next thing you should do is examine the frontal plane QRS. The frontal plane QRS is the most helpful clue to help you differentiate Secundum ASD from Primum ASD. In Primum defects left axis deviation is seen in most patients with an axis of > -30 degrees and very few patients have right axis deviation. In contrast Secundum defects have an axis between 0 degrees and 180 degrees with most cases to the right of 100 degrees.
In the ECG above, you can see an example of the rSR' pattern in V1 with a R' greater than S with T wave inversion which is commonly seen in volume overload Right Ventricular Hypertrophy.
In many cases, a bicuspid aortic valve will cause no problems. People with BAV may become tired more easily than those with normal valvular function and have difficulty maintaining stamina for cardio-intensive activities due to poor heart performance.
A mild diastolic murmur can be heard during auscultation caused by the blood flow through the stenotic valve. It is best heard over the left sternal border with rumbling character and tricuspid opening snap with wide-splitting S1. It may increase in intensity with inspiration (Carvallo's sign). The diagnosis will typically be confirmed by an echocardiograph, which will also allow the physician to assess its severity.
Major symptoms of Lutembacher's syndrome as a result of ASD and MS can range from heart failure to pulmonary congestion.
- Right ventricular overload and Right-sided heart failure: Both are caused by a large ASD and MS (moderate to severe).
- Palpitations: This is caused by blood flowing from left atrium to the right atrium causing a higher left atrial pressure and leading to mitral stenosis. Both atria will be dilated (stretched or open)leading to future atrial arrhythmias or atrial fibrillation (Riaz).
- Pulmonary congestion: When blood or fluid pools within the lungs; this is usually a symptom of mitral stenosis and a small ASD.
- Loud mitral S1 and wide fixed split of pulmonary S2: The loud sound of the mitral S1 and the wide fixed split of pulmonary S2 is a symptoms of mitral stenosis. The sounds often are caused by a reduced pressure gradient in the mitral area that was caused from decompression of the left atrium from the ASD and a displacement (moving from normal position) of the left ventricular lower portion of the heart to the a large right ventricle. The second heart sound (S2) split is caused by the increase right heart blood flow through the ASD causing a late closing of the pulmonary component of the S2 as well as decreased left ventricular and aortic blood flow.
- III/IV mid diastolic murmur, early systolic murmur: This heart murmur is caused by an increase blood flow through the tricuspid valve due to ASD; it is heard best in the left lower sternal area or the bottom of the heart (apex).
The ostium secundum atrial septal defect is the most common type of atrial septal defect, and comprises 6–10% of all congenital heart diseases.
The secundum atrial septal defect usually arises from an enlarged foramen ovale, inadequate growth of the septum secundum, or excessive absorption of the septum primum. About 10 to 20% of individuals with ostium secundum ASDs also have mitral valve prolapse.
An ostium secundum ASD accompanied by an acquired mitral valve stenosis is called Lutembacher's syndrome.
Signs and symptoms of mitral stenosis include the following:
- Heart failure symptoms, such as dyspnea on exertion, orthopnea and paroxysmal nocturnal dyspnea (PND)
- Palpitations
- Chest pain
- Hemoptysis
- Thromboembolism in later stages when the left atrial volume is increased (i.e., dilation). The latter leads to increase risk of atrial fibrillation, which increases the risk of blood stasis (motionless). This increases the risk of coagulation.
- Ascites and edema and hepatomegaly (if right-side heart failure develops)
Fatigue and weakness increase with exercise and pregnancy.
Cor triatriatum (or triatrial heart) is a congenital heart defect where the left atrium (cor triatriatum sinistrum) or right atrium (cor triatriatum dextrum) is subdivided by a thin membrane, resulting in three atrial chambers (hence the name).
Cor triatriatum represents 0.1% of all congenital cardiac malformations and may be associated with other cardiac defects in as many as 50% of cases. The membrane may be complete or may contain one or more fenestrations of varying size.
Cor triatrium sinistrum is more common. In this defect there is typically a proximal chamber that receives the pulmonic veins and a distal (true) chamber located more anteriorly where it empties into the mitral valve. The membrane that separates the atrium into two parts varies significantly in size and shape. It may appear similar to a diaphragm or be funnel-shaped, bandlike, entirely intact (imperforate) or contain one or more openings (fenestrations) ranging from small, restrictive-type to large and widely open.
In the pediatric population, this anomaly may be associated with major congenital cardiac lesions such as tetralogy of Fallot, double outlet right ventricle, coarctation of the aorta, partial anomalous pulmonary venous connection, persistent left superior vena cava with unroofed coronary sinus, ventricular septal defect, atrioventricular septal (endocardial cushion) defect, and common atrioventricular canal. Rarely, asplenia or polysplenia has been reported in these patients.
In the adult, cor triatriatum is frequently an isolated finding.
Cor triatriatum dextrum is extremely rare and results from the complete persistence of the right sinus valve of the embryonic heart. The membrane divides the right atrium into a proximal (upper) and a distal (lower) chamber. The upper chamber receives the venous blood from both vena cavae and the lower chamber is in contact with the tricuspid valve and the right atrial appendage.
The natural history of this defect depends on the size of the communicating orifice between the upper and lower atrial chambers. If the communicating orifice is small, the patient is critically ill and may succumb at a young age (usually during infancy) to congestive heart failure and pulmonary edema. If the connection is larger, patients may present in childhood or young adulthood with a clinical picture similar to that of mitral stenosis. Cor triatriatum may also be an incidental finding when it is nonobstructive.
The disorder can be treated surgically by removing the membrane dividing the atrium.
Bicuspid aortic valves may assume three different types of configuration:
1. "Real" bicuspid valves with two symmetric leaflets
2. A tricuspid architecture with a fusion of two leaflets
3. A tricuspid architecture with a fusion of three leaflets
Most individuals with an uncorrected secundum ASD do not have significant symptoms through early adulthood. More than 70% develop symptoms by about 40 years of age. Symptoms are typically decreased exercise tolerance, easy fatigability, palpitations, and syncope.
Complications of an uncorrected secundum ASD include pulmonary hypertension, right-sided heart failure, atrial fibrillation or flutter, stroke, and Eisenmenger's syndrome.
While pulmonary hypertension is unusual before 20 years of age, it is seen in 50% of individuals above the age of 40. Progression to Eisenmenger's syndrome occurs in 5 to 10% of individuals late in the disease process.
The symptoms/signs of pulmonary atresia that will occur in babies are consistent with cyanosis, some fatigue and some shortness of breath (eating may be a problem as well).
In the case of pulmonary atresia with ventricular septal defect, one finds that decreased pulmonary blood flow may cause associated defects such as:
- Tricuspid atresia
- Tetralogy of Fallot (severe)
- RV w/ double-outlet
As Lutembacher's syndrome is known for ASD and MS, most of the symptoms experienced will be associated with ASD and MS. For most people, they will remain asymptomatic (experience no symptoms) but when symptoms are shown, they are due mainly to ASD and will vary depending on the size of the hole in the atria. If the patient has a large ASD, pulmonary congestion (blood or fluid buildup in the lungs) will happen later but if the patient has a small ASD, symptoms will appear early in the disorder. In general, unless the ASD and mitral stenosis causing Lutembacher's syndrome is severe, symptoms may not appear until the second and third decade of the patient's life. As many of the symptoms are asymptomic and may not appear until later in life, the duration or frequency of the symptoms varies. For symptoms such as palipitations, ventricular overload, heart failure, and pulmonary congenstion, these symptoms may be sudden and not that frequent as they are very severe symptoms. For symptoms such as loud mitral S1, pulmonary S2, mid-diastolic murmur, fatigue, reduced exercise tolerance, weight gain, ankle edema, and right upper quadrant pain, and ascities, these symptoms may be less frequent and severe; their duration may be only a few seconds, minutes, or even months.
Pulmonary atresia is a congenital malformation of the pulmonary valve in which the valve orifice fails to develop. The valve is completely closed thereby obstructing the outflow of blood from the heart to the lungs. The pulmonary valve is located on the right side of the heart between the right ventricle and pulmonary artery. In a normal functioning heart, the opening to the pulmonary valve has three flaps that open and close
In congenital heart defects such as pulmonary atresia, one finds that these structural abnormalities can include the valves of the heart, as well as, the walls and arteries/veins near the heart muscle. Consequently, blood flow due to the aforementioned structural abnormalities, is affected, either by blocking or altering the flow of blood through the human cardiac muscle.
Pulmonary and tricuspid valve diseases are right heart diseases. Pulmonary valve diseases are the least common heart valve disease in adults.
Pulmonary valve stenosis is often the result of congenital malformations and is observed in isolation or as part of a larger pathologic process, as in Tetralogy of Fallot, Noonan syndrome, and congenital rubella syndrome . Unless the degree of stenosis is severe individuals with pulmonary stenosis usually have excellent outcomes and treatment options. Often patients do not require intervention until later in adulthood as a consequence of calcification that occurs with aging.
Pulmonary valve insufficiency occurs commonly in healthy individuals to a very mild extent and does not require intervention. More appreciable insufficiency it is typically the result of damage to the valve due to cardiac catheterization, aortic balloon pump insertion, or other surgical manipulations. Additionally, insufficiency may be the result of carcinoid syndrome, inflammatory processes such a rheumatoid disease or endocarditis, or congenital malformations. It may also be secondary to severe pulmonary hypertension.
Tricuspid valve stenosis without co-occurrent regurgitation is highly uncommon and typically the result of rheumatic disease. It may also be the result of congenital abnormalities, carcinoid syndrome, obstructive right atrial tumors (typically lipomas or myxomas), or hypereosinophilic syndromes.
Minor tricuspid insufficiency is common in healthy individuals. In more severe cases it is a consequence of dilation of the right ventricle, leading to displacement of the papillary muscles which control the valve's ability to close. Dilation of the right ventricle occurs secondary to ventricular septal defects, right to left shunting of blood, eisenmenger syndrome, hyperthyroidism, and pulmonary stenosis. Tricuspid insufficiency may also be the result of congenital defects of the tricuspid valve, such as Ebstein's anomaly.
Shone's syndrome (also called Shone's Complex, Shone's Anomaly)is a rare congenital heart disease described by Shone in 1963. In the complete form, four left-sided defects are present:
- Supravalvular mitral membrane (SVMM)
- Parachute mitral valve
- Subaortic stenosis (membranous or muscular)
- Coarctation of the aorta
Of these four defects, supravalvular mitral membrane (SVMM) is the first to occur, and triggers the development of the other three defects. Partial complexes, or form fruste, have also been described. The definition is often expanded to include lesions of the left side of the heart not originally ascribed to Shone's syndrome, including mitral and aortic valvular lesions and supravalvular aortic stenosis.
The term parachute mitral valve stems from the morphological appearance of the valve; that is to say, the mitral valve leaflets appear as the canopy of the parachute, the chordae as the strings and the papillary muscle as the harness.
Tricuspid Valve Stenosis is a valvular heart disease that narrows the opening of the heart's tricuspid valve. It is a relatively rare condition that causes stenosis-increased restriction of blood flow through the valve.
The symptoms associated with MI are dependent on which phase of the disease process the individual is in. Individuals with acute MI are typically severely symptomatic and will have the signs and symptoms of acute decompensated congestive heart failure (i.e. shortness of breath, pulmonary edema, orthopnea, and paroxysmal nocturnal dyspnea), as well as symptoms of cardiogenic shock (i.e., shortness of breath at rest). Cardiovascular collapse with shock (cardiogenic shock) may be seen in individuals with acute MI due to papillary muscle rupture, rupture of a chorda tendinea or infective endocarditis of the mitral valve.
Individuals with chronic compensated MI may be asymptomatic for long periods of time, with a normal exercise tolerance and no evidence of heart failure. Over time, however, there may be decompensation and patients can develop volume overload (congestive heart failure). Symptoms of entry into a decompensated phase may include fatigue, shortness of breath particularly on exertion, and leg swelling. Also there may be development of an irregular heart rhythm known as atrial fibrillation.
Findings on clinical examination depend on the severity and duration of MI. The mitral component of the first heart sound is usually soft and with a laterally displaced apex beat, often with heave. The first heart sound is followed by a high-pitched holosystolic murmur at the apex, radiating to the back or clavicular area. Its duration is, as the name suggests, the whole of systole. The loudness of the murmur does not correlate well with the severity of regurgitation. It may be followed by a loud, palpable P, heard best when lying on the left side. A third heart sound is commonly heard.
In acute cases, the murmur and tachycardia may be the only distinctive signs.
Patients with mitral valve prolapse may have a holosystolic murmur or often a mid-to-late systolic click and a late systolic murmur. Cases with a late systolic regurgitant murmur may still be associated with significant hemodynamic consequences.
Mitral stenosis is a valvular heart disease characterized by the narrowing of the orifice of the mitral valve of the heart.
Heart valve dysplasia is a congenital heart defect which affects the aortic, pulmonary, mitral, and tricuspid heart valves. Dysplasia of the mitral and tricuspid valves can cause leakage of blood or stenosis.
Dysplasia of the mitral and tricuspid valves - also known as the atrioventricular (AV) valves - can appear as thickened, shortened, or notched valves. The chordae tendinae can be fused or thickened. The papillary muscles can be enlarged or atrophied. The cause is unknown, but genetics play a large role. Dogs and cats with tricuspid valve dysplasia often also have an open foramen ovale, an atrial septal defect, or inflammation of the right atrial epicardium. In dogs, tricuspid valve dysplasia can be similar to Ebstein's anomaly in humans.
Mitral valve stenosis is one of the most common congenital heart defects in cats. In dogs, it is most commonly found in Great Danes, German Shepherd Dogs, Bull Terriers, Golden Retrievers, Newfoundlands, and Mastiffs. Tricuspid valve dysplasia is most common in the Old English Sheepdog, German Shepherd Dog, Weimaraner, Labrador Retriever, Great Pyrenees, and sometimes the Papillon. It is inherited in the Labrador Retriever.
The disease and symptoms are similar to progression of acquired valve disease in older dogs. Valve leakage leads to heart enlargement, arrhythmias, and congestive heart failure. Heart valve dysplasia can be tolerated for years or progress to heart failure in the first year of life. Diagnosis is with an echocardiogram. The prognosis is poor with significant heart enlargement.
Hypoplastic left heart syndrome (HLHS) is a rare congenital heart defect in which the left side of the heart is severely underdeveloped. It may affect the left ventricle, aorta, aortic valve, or mitral valve.
As discussed earlier, Shone’s syndrome is a rare disorder that is often detected in very young children. The children tend to show symptoms like fatigue, nocturnal cough, and reduced cardiac output by the age of two years. They also develop wheezing due to the exudation of fluid into the lungsCitation needed.
The resulting syndrome depends on the structure affected.
Examples of vascular stenotic lesions include:
- Intermittent claudication (peripheral artery stenosis)
- Angina (coronary artery stenosis)
- Carotid artery stenosis which predispose to (strokes and transient ischaemic episodes)
- Renal artery stenosis
The types of stenoses in heart valves are:
- Pulmonary valve stenosis, which is the thickening of the pulmonary valve, therefore causing narrowing
- Mitral valve stenosis, which is the thickening of the mitral valve (of the left heart), therefore causing narrowing
- Tricuspid valve stenosis, which is the thickening of the tricuspid valve (of the right heart), therefore causing narrowing
- Aortic valve stenosis, which is the thickening of the aortic valve, therefore causing narrowing
Stenoses/strictures of other bodily structures/organs include:
- Pyloric stenosis (gastric outflow obstruction)
- Lumbar, cervical or thoracic spinal stenosis
- Subglottic stenosis (SGS)
- Tracheal stenosis
- Obstructive jaundice (biliary tract stenosis)
- Bowel obstruction
- Phimosis
- Non-communicating hydrocephalus
- Stenosing tenosynovitis
- Atherosclerosis
- Esophageal stricture
- Achalasia
- Prinzmetal angina
- Vaginal stenosis