Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Sucrose intolerance, also called sucrase-isomaltase deficiency, congenital sucrase-isomaltase deficiency (CSID), or genetic sucrase-isomaltase deficiency (GSID), is the condition in which sucrase-isomaltase, an enzyme needed for proper metabolism of sucrose (sugar) and starch (i.e., grains and rice), is not produced or the enzyme produced is either partially functional or non-functional in the small intestine. All GSID patients lack fully functional sucrase, while the isomaltase activity can vary from minimal functionality to almost normal activity. The presence of residual isomaltase activity may explain why some GSID patients are better able to tolerate starch in their diet than others with GSID.
The highest prevalence rates are seen in the Inuit populations of Greenland (5–10%), Alaska (3–7%) and Canada (about 3%). European descent prevalence ranges from 0.2% to 0.05%. There is a lower prevalence reported in African Americans and Hispanics compared to Caucasians.
Lactose intolerance is a condition in which people have symptoms due to the decreased ability to digest lactose, a sugar found in milk products. Those affected vary in the amount of lactose they can tolerate before symptoms develop. Symptoms may include abdominal pain, bloating, diarrhea, gas, and nausea. These symptoms typically start between half and two hours after drinking milk or eating milk products. Severity depends on the amount a person eats or drinks. It does not cause damage to the gastrointestinal tract.
Lactose intolerance is due to the lack of enzyme lactase in the small intestines to break lactose down into glucose and galactose. There are four types: primary, secondary, developmental, and congenital. Primary lactose intolerance is when the amount of lactase declines as people age. Secondary lactose intolerance is due to injury to the small intestine such as from infection, celiac disease, inflammatory bowel disease, or other diseases. Developmental lactose intolerance may occur in premature babies and usually improves over a short period of time. Congenital lactose intolerance is an extremely rare genetic disorder in which little or no lactase is made from birth.
Diagnosis may be confirmed if symptoms resolve following eliminating lactose from the diet. Other supporting tests include a hydrogen breath test and a stool acidity test. Other conditions that may produce similar symptoms include irritable bowel syndrome, celiac disease, and inflammatory bowel disease. Lactose intolerance is different from a milk allergy. Management is typically by decreasing the amount of lactose in the diet, taking lactase supplements, or treating the underlying disease. People are usually able to drink at least one cup of milk per sitting without developing significant symptoms, with greater amounts tolerated if drunk with a meal or throughout the day.
The exact number of adults with lactose intolerance is unknown. One estimate puts the average at 65% of the global population. Rates of lactose intolerance vary between regions, from less than 10% in Northern Europe to as high as 95% in parts of Asia and Africa. Onset is typically in late childhood or early adulthood. The ability to digest lactose into adulthood evolved in several human populations independently probably as an adaptation to domestication of dairy animals 10,000 years ago.
Symptoms vary according to individuals' hydration level and sensitivity to the rate and/or magnitude of decline of their blood glucose concentration.
A crash is usually felt within four hours or less of heavy carbohydrate consumption. Symptoms of reactive hypoglycemia include:
- double vision or blurry vision
- unclear thinking
- insomnia
- heart palpitation or fibrillation
- fatigue
- dizziness
- light-headedness
- sweating
- headaches
- depression
- nervousness
- muscle twitches
- irritability
- tremors
- flushing
- craving sweets
- increased appetite
- rhinitis
- nausea, vomiting
- panic attack
- numbness/coldness in the extremities
- confusion
- irrationality
- bad temper
- paleness
- cold hands
- disorientation
- the need to sleep or 'crash'
- coma can be a result in severe untreated episodes
The majority of these symptoms, often correlated with feelings of hunger, mimic the effect of inadequate sugar intake as the biology of a crash is similar in itself to the body’s response to low blood sugar levels following periods of glucose deficiency.
Lactose intolerance primarily refers to a syndrome having one or more symptoms upon the consumption of food substances containing lactose. Individuals may be lactose intolerant to varying degrees, depending on the severity of these symptoms. "Lactose malabsorption" refers to the physiological concomitant of lactase deficiency (i.e., the body does not have sufficient lactase capacity to digest the amount of lactose ingested). Hypolactasia (lactase deficiency) is distinguished from alactasia (total lack of lactase), a rare congenital defect.
Lactose intolerance is not an allergy, because it is not an immune response, but rather a sensitivity to dairy caused by lactase deficiency. Milk allergy, occurring in only 4% of the population, is a separate condition, with distinct symptoms that occur when the presence of milk proteins trigger an immune reaction.
Sucrose intolerance can be caused by genetic mutations in which both parents must contain this gene for the child to carry the disease (so-called primary sucrose intolerance). Sucrose intolerance can also be caused by irritable bowel syndrome, aging, or small intestine disease (secondary sucrose intolerance). There are specific tests used to help determine if a person has sucrose intolerance. The most accurate test is the enzyme activity determination, which is done by biopsying the small intestine. This test is a diagnostic for GSID. Other tests which can aid in the diagnosis of GSID but which are not truly diagnostic for the disease are the sucrose breath test, and a genetic test which tests for the absence of certain genes which are thought to be responsible for GSID.
Sucrose (also termed "saccharose") is a disaccharide and is a two-sugar chain composed of glucose and fructose which are bonded together. A more familiar name is table, beet, or cane sugar. It was believed that most cases of sucrose intolerance were to do an autosomal recessive, genetic, metabolic disease. Based on new data patients with heterozygous and compound heterozygous genotypes can have symptom presentation as well. GSID involves deficiency in the enzyme sucrase-isomaltase, which breaks apart the glucose and fructose molecules. When disaccharides are consumed, they must be broken down into monosaccharides by enzymes in the intestines before they can be absorbed. Monosaccharides, or single sugar units, are absorbed directly into the blood.
A deficiency of sucrase may result in malabsorption of sugar, which can lead to potentially serious symptoms. Since sucrose-isomaltase is involved in the digestion of starches, some GSID patients may not be able to absorb starches as well. It is important for those with sucrose intolerance to minimize sucrose consumption as much as possible. Dietary supplements or medications may be taken as a substitute for the enzyme missing or to introduce healthy bacteria into the immune system.
These depend on poorly understood variations in individual biology and consequently may not be found with all people diagnosed with insulin resistance.
- Increased hunger
- Lethargy (tiredness)
- Brain fogginess and inability to focus
- High blood sugar
- Weight gain, fat storage, difficulty losing weight – for most people, excess weight is from high subcutaneous fat storage; the fat in IR is generally stored in and around abdominal organs in both males and females; it is currently suspected that hormones produced in that fat are a precipitating cause of insulin resistance
- Increased blood cholesterol levels
- Increased blood pressure; many people with hypertension are either diabetic or pre-diabetic and have elevated insulin levels due to insulin resistance; one of insulin's effects is to control arterial wall tension throughout the body
Reactive hypoglycemia, postprandial hypoglycemia, or sugar crash is a term describing recurrent episodes of symptomatic hypoglycemia occurring within 4 hours after a high carbohydrate meal in people who do not have diabetes.
The condition is related to homeostatic systems utilised by the body to control blood sugar levels. It is variously described as a sense of tiredness, lethargy, irritation, or hangover, although the effects can be less if one has undertaken a lot of physical activity within the next few hours after consumption.
The alleged mechanism for the feeling of a crash is correlated with an abnormally rapid rise in blood glucose after eating. This normally leads to insulin secretion (known as an "insulin spike"), which in turn initiates rapid glucose uptake by tissues either accumulating it as glycogen or utilizing it for energy production. The consequent fall in blood glucose is indicated as the reason for the "sugar crash".. A deeper cause might be hysteresis effect of insulin action, i.e., the effect of insulin is still prominent even if both plasma glucose and insulin levels were already low, causing a plasma glucose level eventually much lower than the baseline level.
Sugar crashes are not to be confused with the after-effects of consuming large amounts of "protein", which produces fatigue akin to a sugar crash, but are instead the result of the body prioritising the digestion of ingested food.
The prevalence of this condition is difficult to ascertain because a number of stricter or looser definitions have been used. It is recommended that the term reactive hypoglycemia be reserved for the pattern of postprandial hypoglycemia which meets the Whipple criteria (symptoms correspond to measurably low glucose and are relieved by raising the glucose), and that the term idiopathic postprandial syndrome be used for similar patterns of symptoms where abnormally low glucose levels at the time of symptoms cannot be documented.
To assist diagnosis, a doctor can order an HbA1c test, which measures the blood sugar average over the two or three months before the test. The more specific 6-hour glucose tolerance test can be used to chart changes in the patient's blood sugar levels before ingestion of a special glucose drink and at regular intervals during the six hours following to see if an unusual rise or drop in blood glucose levels occurs.
According to the U.S. National Institute of Health (NIH), a blood glucose level below 70 mg/dL (3.9 mmol/L) at the time of symptoms followed by relief after eating confirms a diagnosis for reactive hypoglycemia.
The most common clinical history in patients with glycogen-storage disease type 0 (GSD-0) is that of an infant or child with symptomatic hypoglycemia or seizures that occur before breakfast or after an inadvertent fast. In affected infants, this event typically begins after they outgrow their nighttime feeds. In children, this event may occur during acute GI illness or periods of poor enteral intake.
Mild hypoglycemic episodes may be clinically unrecognized, or they may cause symptoms such as drowsiness, sweating, lack of attention, or pallor. Uncoordinated eye movements, disorientation, seizures, and coma may accompany severe episodes.
Glycogen-storage disease type 0 affects only the liver. Growth delay may be evident with height and weight percentiles below average. Abdominal examination findings may be normal or reveal only mild hepatomegaly.Signs of acute hypoglycemia may be present, including the following:
Insulin resistance (IR) is a pathological condition in which cells fail to respond normally to the hormone insulin. The body produces insulin when glucose starts to be released into the bloodstream from the digestion of carbohydrates in the diet. Normally this insulin response triggers glucose being taken into body cells, to be used for energy, and inhibits the body from using fat for energy. The concentration of glucose in the blood decreases as a result, staying within the normal range even when a large amount of carbohydrates is consumed. When the body produces insulin under conditions of insulin resistance, the cells are resistant to the insulin and are unable to use it as effectively, leading to high blood sugar. Beta cells in the pancreas subsequently increase their production of insulin, further contributing to a high blood insulin level. This often remains undetected and can contribute to the development of type 2 diabetes or latent autoimmune diabetes of adults. Although this type of chronic insulin resistance is harmful, during acute illness it is actually a well-evolved protective mechanism. Recent investigations have revealed that insulin resistance helps to conserve the brain's glucose supply by preventing muscles from taking up excessive glucose. In theory, insulin resistance should even be strengthened under harsh metabolic conditions such as pregnancy, during which the expanding fetal brain demands more glucose.
People who develop type 2 diabetes usually pass through earlier stages of insulin resistance and prediabetes, although those often go undiagnosed. Insulin resistance is a syndrome (a set of signs and symptoms) resulting from reduced insulin activity; it is also part of a larger constellation of symptoms called the metabolic syndrome.
Insulin resistance may also develop in patients who have recently experienced abdominal or bariatric procedures. This acute form of insulin resistance that may result post-operatively tends to increase over the short term, with sensitivity to insulin typically returning to patients after about five days.
Hyperinsulinemic hypoglycemia describes the condition and effects of low blood glucose caused by excessive insulin. Hypoglycemia due to excess insulin is the most common type of serious hypoglycemia. It can be due to endogenous or injected insulin.
Chromium deficiency is a proposed disorder that results from an insufficient dietary intake of chromium. Chromium was first proposed as an essential element for normal glucose metabolism in 1959, and was widely accepted as being such by the 1990s. Cases of deficiency have been claimed in hospital patients who were fed defined liquid diets intravenously for long periods of time.
By the turn of the century, these views were being challenged, with subsequent work suggesting that chromium supplements may present a health risk. In spite of this, dietary supplements containing chromium remain widely available.
The symptoms of chromium deficiency caused by long-term total parenteral nutrition are severely impaired glucose tolerance, weight loss, and confusion. However, subsequent studies questioned the validity of these findings.
Intestinal involvement can cause mild malabsorption with steatorrhea, greasy stools, but usually requires no treatment.
Hypoglycemia in early infancy can cause jitteriness, lethargy, unresponsiveness, or seizures. The most severe forms may cause macrosomia in utero, producing a large birth weight, often accompanied by abnormality of the pancreas. Milder hypoglycemia in infancy causes hunger every few hours, with increasing jitteriness or lethargy. Milder forms have occasionally been detected by investigation of family members of infants with severe forms, adults with the mildest degrees of congenital hyperinsulinism have a decreased tolerance for prolonged fasting. Other presentations are:
The variable ages of presentations and courses suggest that some forms of congenital hyperinsulinism, especially those involving abnormalities of K channel function, can worsen or improve with time the potential harm from hyperinsulinemic hypoglycemia depends on the severity, and duration. Children who have recurrent hyperinsulinemic hypoglycemia in infancy can suffer harm to the brain
Manifestations of hyperinsulinemic hypoglycemia vary by age and severity of the hypoglycemia. In general, most signs and symptoms can be attributed to (1) the effects on the brain of insufficient glucose (neuroglycopenia) or (2) to the adrenergic response of the autonomic nervous system to hypoglycemia. A few miscellaneous symptoms are harder to attribute to either of these causes. In most cases, all effects are reversed when normal glucose levels are restored.
There are uncommon cases of more persistent harm, and rarely even death due to severe hypoglycemia of this type. One reason hypoglycemia due to excessive insulin can be more dangerous is that insulin lowers the available amounts of most alternate brain fuels, such as ketones. Brain damage of various types ranging from stroke-like focal effects to impaired memory and thinking can occur. Children who have prolonged or recurrent hyperinsulinemic hypoglycemia in infancy can suffer harm to their brains and may be developmentally delayed.
Hypoglycemia is the central clinical problem, the one that is most damaging, and the one that most often prompts the initial diagnosis.
Maternal glucose transferred across the placenta prevents hypoglycemia in a fetus with GSD I, but the liver is enlarged with glycogen at birth. The inability to generate and release glucose soon results in hypoglycemia, and occasionally in lactic acidosis fulminant enough to appear as a primary respiratory problem in the newborn period. Neurological manifestations are less severe than if the hypoglycemia were more acute. The brain's habituation to mild hypoglycemia is at least partly explained by use of alternative fuels, primarily lactate.
More commonly, infants with GSD I tolerate without obvious symptoms a chronic, mild hypoglycemia, and compensated lactic acidosis between feedings. Blood glucose levels are typically 25 to 50 mg/dl (1.4–2.8 mM). These infants continue to need oral carbohydrates every few hours. Many never sleep through the night even in the second year of life. They may be pale, clammy, and irritable a few hours after a meal. Developmental delay is not an intrinsic or inevitable effect of glucose-6-phosphatase deficiency but is common if the diagnosis is not made in early infancy.
Although mild hypoglycemia for much of the day may go unsuspected, the metabolic adaptations described above make severe hypoglycemic episodes, with unconsciousness or seizure, uncommon before treatment. Episodes which occur are likely to happen in the morning before breakfast. GSD I is therefore a potential cause of ketotic hypoglycemia in young children.
Once the diagnosis has been made, the principal goal of treatment is to maintain an adequate glucose level and prevent hypoglycemia.
Hypoglycemic symptoms and manifestations can be divided into those produced by the counterregulatory hormones (epinephrine/adrenaline and glucagon) triggered by the falling glucose, and the neuroglycopenic effects produced by the reduced brain sugar.
- Shakiness, anxiety, nervousness
- Palpitations, tachycardia
- Sweating, feeling of warmth (sympathetic muscarinic rather than adrenergic)
- Pallor, coldness, clamminess
- Dilated pupils (mydriasis)
- Hunger, borborygmus
- Nausea, vomiting, abdominal discomfort
- Headache
The degree of hyperglycemia can change over time depending on the metabolic cause, for example, impaired glucose tolerance or fasting glucose, and it can depend on treatment. Temporary hyperglycemia is often benign and asymptomatic. Blood glucose levels can rise well above normal and cause pathological and functional changes for significant periods without producing any permanent effects or symptoms. During this asymptomatic period, an abnormality in carbohydrate metabolism can occur which can be tested by measuring plasma glucose. However, chronic hyperglycemia at above normal levels can produce a very wide variety of serious complications over a period of years, including kidney damage, neurological damage, cardiovascular damage, damage to the retina or damage to feet and legs. Diabetic neuropathy may be a result of long-term hyperglycemia. Impairment of growth and susceptibility to certain infection can occur as a result of chronic hyperglycemia.
Acute hyperglycemia involving glucose levels that are extremely high is a medical emergency and can rapidly produce serious complications (such as fluid loss through osmotic diuresis). It is most often seen in persons who have uncontrolled insulin-dependent diabetes.
The following symptoms may be associated with acute or chronic hyperglycemia, with the first three composing the classic hyperglycemic triad:
- Polyphagia – frequent hunger, especially pronounced hunger
- Polydipsia – frequent thirst, especially excessive thirst
- Polyuria – increased volume of urination (not an increased frequency for urination)
- Blurred vision
- Fatigue
- Restlessness
- Weight loss
- Poor wound healing (cuts, scrapes, etc.)
- Dry mouth
- Dry or itchy skin
- Tingling in feet or heels
- Erectile dysfunction
- Recurrent infections, external ear infections (swimmer's ear)
- Cardiac arrhythmia
- Stupor
- Coma
- Seizures
Frequent hunger without other symptoms can also indicate that blood sugar levels are too low. This may occur when people who have diabetes take too much oral hypoglycemic medication or insulin for the amount of food they eat. The resulting drop in blood sugar level to below the normal range prompts a hunger response. This hunger is not usually as pronounced as in Type I diabetes, especially the juvenile onset form, but it makes the prescription of oral hypoglycemic medication difficult to manage.
Polydipsia and polyuria occur when blood glucose levels rise high enough to result in excretion of excess glucose via the kidneys, which leads to the presence of glucose in the urine. This produces an osmotic diuresis.
Signs and symptoms of diabetic ketoacidosis may include:
- Ketoacidosis
- Kussmaul hyperventilation: deep, rapid breathing
- Confusion or a decreased level of consciousness
- Dehydration due to glycosuria and osmotic diuresis
- Acute hunger and/or thirst
- 'Fruity' smelling breath odor
- Impairment of cognitive function, along with increased sadness and anxiety
Hyperglycemia caused a decrease in cognitive performance, specifically in processing speed, and executive function and performance. Decreased cognitive performance may cause forgetfulness and concentration loss
Glycogen storage disease type 0 is a disease characterized by a deficiency in the glycogen synthase enzyme (GYS). Although glycogen synthase deficiency does not result in storage of extra glycogen in the liver, it is often classified as a glycogen storage disease because it is another defect of glycogen storage and can cause similar problems. There are two isoforms (types) of glycogen synthase enzyme; GYS1 in muscle and GSY2 in liver, each with a corresponding form of the disease. Mutations in the liver isoform (GYS2), causes fasting hypoglycemia, high blood ketones, increased free fatty acids and low levels of alanine and lactate. Conversely, feeding in these patients results in hyperglycemia and hyperlactatemia.
Amylophagia is a condition involving the compulsive consumption of excessive amounts of purified starch. It is a form of pica and is often observed in pregnant women.
Congenital hyperinsulinism is a medical term referring to a variety of congenital disorders in which hypoglycemia is caused by excessive insulin secretion. Congenital forms of hyperinsulinemic hypoglycemia can be transient or persistent, mild or severe. These conditions are present at birth and most become apparent in early infancy. Mild cases can be treated by frequent feedings, more severe cases can be controlled by medications that reduce insulin secretion or effects
Hypoglycemia, also known as low blood sugar, is when blood sugar decreases to below normal levels. This may result in a variety of symptoms including clumsiness, trouble talking, confusion, loss of consciousness, seizures, or death. A feeling of hunger, sweating, shakiness, and weakness may also be present. Symptoms typically come on quickly.
The most common cause of hypoglycemia is medications used to treat diabetes mellitus such as insulin and sulfonylureas. Risk is greater in diabetics who have eaten less than usual, exercised more than usual, or have drunk alcohol. Other causes of hypoglycemia include kidney failure, certain tumors, such as insulinoma, liver disease, hypothyroidism, starvation, inborn error of metabolism, severe infections, reactive hypoglycemia, and a number of drugs including alcohol. Low blood sugar may occur in otherwise healthy babies who have not eaten for a few hours.
The glucose level that defines hypoglycemia is variable. In people with diabetes levels below 3.9 mmol/L (70 mg/dL) is diagnostic. In adults without diabetes, symptoms related to low blood sugar, low blood sugar at the time of symptoms, and improvement when blood sugar is restored to normal confirm the diagnosis. Otherwise a level below 2.8 mmol/L (50 mg/dL) after not eating or following exercise may be used. In newborns a level below 2.2 mmol/L (40 mg/dL) or less than 3.3 mmol/L (60 mg/dL) if symptoms are present indicates hypoglycemia. Other tests that may be useful in determining the cause include insulin and C peptide levels in the blood. Hyperglycemia (high blood sugar) is the opposite condition.
Among people with diabetes, prevention is by matching the foods eaten with the amount of exercise and the medications used. When people feel their blood sugar is low, testing with a glucose monitor is recommended. Some people have few initial symptoms of low blood sugar and frequent routine testing in this group is recommended. Treatment of hypoglycemia is by eating foods high in simple sugars or taking dextrose. If a person is not able to take food by mouth, an injection of glucagon may help. The treatment of hypoglycemia unrelated to diabetes includes treating the underlying problem as well and a healthy diet. The term "hypoglycemia" is sometimes incorrectly used to refer to idiopathic postprandial syndrome, a controversial condition with similar symptoms that occur following eating but with normal blood sugar levels.
The symptoms of Rabson–Mendenhall syndrome vary from case to case. Major symptoms of Rabson–Mendenhall syndrome include abnormalities of the teeth and nails, such as dental dysplasia, and deformities of the head and face, which include a coarse prematurely-aged facial appearance with a prominent jaw. A skin abnormality known as acanthosis nigricans, which involves a discoloration (hyperpigmentation) and “velvety” thickening (hyperkeratosis) of the skin around skin fold regions of the neck, groin and under arms is also a common symptom. Symptoms will negatively impact the daily life of the patient, and will persist until treated.
Minor symptoms may include an enlargement of the genitalia and precocious puberty and a deficiency or absence of fat tissue. Because individuals with Rabson–Mendenhall syndrome fail to use insulin properly, they may experience abnormally high blood sugar levels (hyperglycemia) after eating a meal, and abnormally low blood sugar levels (hypoglycemia) when not eating.
Equine polysaccharide storage myopathy (EPSM, PSSM, EPSSM) is an inheritable glycogen storage disease of horses that causes exertional rhabdomyolysis. It is most commonly associated with heavy horse breeds and the American Quarter Horse. While incurable, PSSM can be managed with appropriate diet and exercise. There are currently 2 subtypes, known as Type 1 PSSM and Type 2 PSSM.
Hyperglycemia, or high blood sugar (also spelled hyperglycaemia or hyperglycæmia) is a condition in which an excessive amount of glucose circulates in the blood plasma. This is generally a blood sugar level higher than 11.1 mmol/l (200 mg/dl), but symptoms may not start to become noticeable until even higher values such as 15–20 mmol/l (~250–300 mg/dl). A subject with a consistent range between ~5.6 and ~7 mmol/l (100–126 mg/dl) (American Diabetes Association guidelines) is considered slightly hyperglycemic, while above 7 mmol/l (126 mg/dl) is generally held to have diabetes. For diabetics, glucose levels that are considered to be too hyperglycemic can vary from person to person, mainly due to the person's renal threshold of glucose and overall glucose tolerance. On average however, chronic levels above 10–12 mmol/L (180–216 mg/dL) can produce noticeable organ damage over time.