Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Physiological nystagmus is a form of involuntary eye movement that is part of the vestibulo-ocular reflex (VOR), characterized by alternating smooth pursuit in one direction and saccadic movement in the other direction.
Pathological nystagmus is characterized by "excessive drifts of stationary retinal images that degrades vision and may produce illusory motion of the seen world: oscillopsia (an exception is congenital nystagmus)".
When nystagmus occurs without fulfilling its normal function, it is pathologic (deviating from the healthy or normal condition). Pathological nystagmus is the result of damage to one or more components of the vestibular system, including the semicircular canals, otolith organs, and the vestibulocerebellum.
Pathological nystagmus generally causes a degree of vision impairment, although the severity of such impairment varies widely. Also, many blind people have nystagmus, which is one reason that some wear dark glasses.
Concomitant esotropia – that is, an inward squint that does not vary with the direction of gaze – mostly sets in before 12 months of age (this constitutes 40% of all strabismus cases) or at the age of three or four. Most patients with "early-onset" concomitant esotropia are emmetropic, whereas most of the "later-onset" patients are hyperopic. It is the most frequent type of natural strabismus not only in humans, but also in monkeys.
Concomitant esotropia can itself be subdivided into esotropias that are ether "constant," or "intermittent."
- Constant esotropia
- Intermittent esotropia
A patient can have a constant esotropia for reading, but an intermittent esotropia for distance (but rarely vice versa).
"Cross-fixation congenital esotropia", also called "Cianci's syndrome" is a particular type of large-angle infantile esotropia associated with tight medius rectus muscles. With the tight muscles, which hinder adduction, there is a constant inward eye turn. The patient cross-fixates, that is, to fixate objects on the left, the patient looks across the nose with the right eye, and vice versa. The patient tends to adopt a head turn, turning the head to the right to better see objects in the left visual field and turning the head to the left to see those in the right visual field. Binasal occlusion can be used to discourage cross-fixation. However, the management of cross-fixation congenital esotropia usually involves surgery.
A rostral lesion within the midbrain may affect the convergence center thus causing bilateral divergence of the eyes which is known as the WEBINO syndrome (Wall Eyed Bilateral INO) as each eye looks at the opposite "wall".
If the lesion affects the PPRF (or the abducens nucleus) and the MLF on the same side (the MLF having crossed from the opposite side), then the "one and a half syndrome" occurs which, simply put, involves paralysis of all conjugate horizontal eye movements other than abduction of the eye on the opposite side to the lesion.
Clinically Infantile esotropia must be distinguished from:
1. VIth Cranial nerve or abducens palsy
2. Nystagmus Blockage Syndrome
3. Esotropia arising secondary to central nervous system abnormalities (in cerebral palsy for example)
4. Primary Constant esotropia
5. Duane's Syndrome
Accommodative esotropia (also called "refractive esotropia") is an inward turning of the eyes due to efforts of accommodation. It is often seen in patients with moderate amounts of hyperopia. The person with hyperopia, in an attempt to "accommodate" or focus the eyes, converges the eyes as well, as convergence is associated with activation of the accommodation reflex. The over-convergence associated with the extra accommodation required to overcome a hyperopic refractive error can precipitate a loss of binocular control and lead to the development of esotropia.
The chances of an esotropia developing in a hyperopic child will depend to some degree on the amount of hyperopia present. Where the degree of error is small, the child will typically be able to maintain control because the amount of over-accommodation required to produce clear vision is also small. Where the degree of hyperopia is large, the child may not be able to produce clear vision no matter how much extra-accommodation is exerted and thus no incentive exists for the over-accommodation and convergence that can give rise to the onset of esotropia. However, where the degree of error is small enough to allow the child to generate clear vision by over-accommodation, but large enough to disrupt their binocular control, esotropia will result.
Only about 20% of children with hyperopia greater than +3.5 diopters develop strabismus.
Where the esotropia is solely a consequence of uncorrected hyperopic refractive error, providing the child with the correct glasses and ensuring that these are worn all the time, is often enough to control the deviation. In such cases, known as 'fully accommodative esotropias,' the esotropia will only be seen when the child removes their glasses. Many adults with childhood esotropias of this type make use of contact lenses to control their 'squint.' Some undergo refractive surgery for this purpose.
A second type of accommodative esotropia also exists, known as 'convergence excess esotropia.' In this condition the child exerts excessive accommodative convergence relative to their accommodation. Thus, in such cases, even when all underlying hyperopic refractive errors have been corrected, the child will continue to squint when looking at very small objects or reading small print. Even though they are exerting a normal amount of accommodative or 'focusing' effort, the amount of convergence associated with this effort is excessive, thus giving rise to esotropia. In such cases an additional hyperopic correction is often prescribed in the form of bifocal lenses, to reduce the degree of accommodation, and hence convergence, being exerted. Many children will gradually learn to control their esotropias, sometimes with the help of orthoptic exercises. However, others will eventually require extra-ocular muscle surgery to resolve their problems.
The disorder is caused by injury or dysfunction in the medial longitudinal fasciculus (MLF), a heavily myelinated tract that allows conjugate eye movement by connecting the paramedian pontine reticular formation (PPRF)-abducens nucleus complex of the contralateral side to the oculomotor nucleus of the ipsilateral side.
In young patients with bilateral INO, multiple sclerosis is often the cause. In older patients with one-sided lesions a stroke is a distinct possibility. Other causes are possible.
Pendular nystagmus is a sinusoidal oscillation, which refers to the waveform of involuntary eye movements that may occur in any direction. It is characterized by the multidimensional slow eye movements of the eyes (1 Hz frequency) with an equal velocity in each direction that resembles the trajectory of a pendulum. These pattern of these movements may differ between the two eyes. Depending upon the pattern of movements, pendular nystagmus has been divided into different subtypes such as congenital nystagmus, acquired pendular nystagmus, and amaurotic nystagmus.
If an optokinetic drum is available, rotate the drum in front of the patient. Ask the patient to look at the drum as you rotate it slowly. If an optokinetic drum is not available, move a strip of paper with alternating 2-inch black and white strips across the patient's visual field. Pass it in front of the patient's eye at reading distance while instructing the patient to look at it as it rapidly moves by. With normal vision, a nystagmus develops in both adults and infants. The nystagmus consists of initial slow phases in the direction of the stimulus (smooth pursuits), followed by fast, corrective phases (saccade). Presence of nystagmus indicates an intact visual pathway.
Another effective method is to hold a mirror in front of the patient and slowly rotate the mirror to either side of the patient. The patient with an intact visual pathway will maintain eye contact with herself or himself. This compelling optokinetic stimulus forces reflex slow eye movements.
OKN can be used as a crude assessment of the visual system, particularly in infants. When factitious blindness or malingering is suspected, check for optokinetic nystagmus to determine whether there is an intact visual pathway.
The optokinetic response is a combination of a slow-phase and fast-phase eye movements. It is seen when an individual follows a moving object with their eyes, which then moves out of the field of vision at which point their eye moves back to the position it was in when it first saw the object. The reflex develops at about 6 months of age.
Optokinetic nystagmus (OKN) is nystagmus that occurs in response to a rotation movement. It is present normally. The optokinetic response allows the eye to follow objects in motion when the head remains stationary (e.g., observing individual telephone poles on the side of the road as one travels by them in a car, or observing stationary objects while walking past them).
Amaurotic nystagmus is defined as the nystagmus associated with blindness or the central vision defects. It is characterized by the pendular or jerky movements of the eyes in the patients who have visual impairement for a long period of time.
There have been cases of improvement in extra-ocular movement with botulinum toxin injection.
Parinaud's Syndrome is a cluster of abnormalities of eye movement and pupil dysfunction, characterized by:
1. Paralysis of upgaze: Downward gaze is usually preserved. This vertical palsy is supranuclear, so doll's head maneuver should elevate the eyes, but eventually all upward gaze mechanisms fail.
2. Pseudo-Argyll Robertson pupils: Accommodative paresis ensues, and pupils become mid-dilated and show light-near dissociation.
3. Convergence-Retraction nystagmus: Attempts at upward gaze often produce this phenomenon. On fast up-gaze, the eyes pull in and the globes retract. The easiest way to bring out this reaction is to ask the patient to follow down-going stripes on an optokinetic drum.
4. Eyelid retraction (Collier's sign)
5. Conjugate down gaze in the primary position: "setting-sun sign". Neurosurgeons see this sign most commonly in patients with failed hydrocephalus shunts.
It is also commonly associated with bilateral papilledema. It has less commonly been associated with spasm of accommodation on attempted upward gaze, pseudoabducens palsy (also known as thalamic esotropia) or slower movements of the abducting eye than the adducting eye during horizontal saccades, see-saw nystagmus and associated ocular motility deficits including skew deviation, oculomotor nerve palsy, trochlear nerve palsy and internuclear ophthalmoplegia.
Causes of the one and a half syndrome include pontine hemorrhage, ischemia, tumors, infective mass lesions such as tuberculomas, and demyelinating conditions like multiple sclerosis.
The effects a coloboma has on the vision can be mild or more severe depending on the size and location of the gap. If, for example, only a small part of the iris is missing, vision may be normal, whereas if a large part of the retina or optic nerve is missing, vision may be poor and a large part of the visual field may be missing. This is more likely to cause problems with mobility if the lower visual field is absent. Other conditions can be associated with a coloboma. Sometimes, the eye may be reduced in size, a condition called microphthalmia. Glaucoma, nystagmus, scotoma, or strabismus may also occur.
The primary vitreous used in formation of the eye during fetal development remains in the eye upon birth and is hazy and scarred. The symptoms are leukocoria, strabismus, nystagmus and blurred vision, blindness.
Other ocular malformations that include coloboma or are related to it:
- CHARGE syndrome, a term that came into use as an acronym for the set of unusual congenital features seen in a number of newborn children. The letters stand for: coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. Although these features are no longer used in making a diagnosis, the name has remained.
- Cat eye syndrome, caused by the short arm (p) and a small section of the long arm (q) of human chromosome 22 being present three (trisomic) or four times (tetrasomic) instead of the usual two times. The term "cat eye" was coined because of the particular appearance of the vertical colobomas in the eyes of some patients.
- Patau syndrome (trisomy 13), a chromosomal abnormality that can cause a number of deformities, some of which include structural eye defects, including microphthalmia, Peters anomaly, cataract, iris and/or fundus coloboma, retinal dysplasia or retinal detachment, sensory nystagmus, cortical visual loss, and optic nerve hypoplasia.
- Treacher Collins syndrome, autosomal dominant syndrome caused by mutation of "TCOF1". Coloboma is part of a set of characteristic facies that features craniofacial malformations, such as downslanting eyes, ear anomalies, or hypoplasia of zygomatic bone and jaw (micrognathia).
Persistent hyperplastic primary vitreous (PHPV), also known as Persistent Fetal Vasculature (PFV), is a rare congenital developmental anomaly of the eye that results
following failure of the embryological, primary vitreous and hyaloid vasculature to regress. It can be present in three forms: purely anterior (persistent tunica vasculosa lentis and persistent posterior fetal fibrovascular sheath of the lens), purely posterior (falciform retinal septum and ablatio falcicormis congenita) and a combination of both. Most examples of PHPV are unilateral and non-hereditary. When bilateral, PHPV may follow an autosomal recessive or autosomal dominant inheritance pattern.
Bruns nystagmus is an unusual type of bilateral nystagmus most commonly occurring in patients with cerebellopontine angle tumours. It is caused by the combination of slow, large amplitude nystagmus (gaze paretic nystagmus) when looking towards the side of the lesion, and rapid, small amplitude nystagmus (vestibular nystagmus) when looking away from the side of the lesion. It occurs in 11% of patients with vestibular schwannoma, and occurs mainly in patients with larger tumours (67% of patients with tumours over 3.5 cm diameter). Bruns nystagmus is also associated with an increased incidence of balance disturbance in patients with vestibular schwannoma. It may be caused by the compression of both flocculi, the vestibular part of the cerebellum, and improvement in both the nystagmus and balance problems occur commonly after removal of the tumour.
Bruns nystagmus is named for Ludwig Bruns (1858 – 1915).
Parinaud's syndrome, also known as dorsal midbrain syndrome, vertical gaze palsy, and Sunset Sign, is an inability to move the eyes up and down. It is caused by compression of the vertical gaze center at the rostral interstitial nucleus of medial longitudinal fasciculus (riMLF). The eyes lose the ability to move upward and down .
It is a group of abnormalities of eye movement and pupil dysfunction. It is caused by lesions of the upper brain stem and is named for Henri Parinaud (1844–1905), considered to be the father of French ophthalmology.
Zonular cataract and nystagmus, also referred as Nystagmus with congenital zonular cataract is a rare congenital disease associated with Nystagmus and zonular cataract of the eye.
It has been suggested that the disease follows a x-linked pattern of inheritance though studies done on this particular disease are few.
The syndrome is frequently noticed first in children around six months of age by their photophobic activity and/or their nystagmus. The nystagmus becomes less noticeable with age but the other symptoms of the syndrome become more relevant as school age approaches. Visual acuity and stability of the eye motions generally improve during the first 6–7 years of life (but remain near 20/200).
The congenital forms of the condition are considered stationary and do not worsen with age.
The five symptoms associated with achromatopsia/dyschromatopsia are:
- Achromatopsia
- Amblyopia (reduced visual acuity)
- Hemeralopia (with the subject exhibiting photophobia)
- Nystagmus
- Iris operating abnormalities
The syndrome of achromatopsia/dyschromatopsia is poorly described in current medical and neuro-ophthalmological texts. It became a common term following the popular book by the neuroscientist Oliver Sacks, ""The Island of the Colorblind"" in 1997. Up to that time most color-blind subjects were described as achromats or achromatopes. Those with a lesser degree of color perception abnormality were described as either protanopes, deuteranopes or tetartanopes (historically tritanopes).
Achromatopsia has also been called rod monochromacy and total congenital color blindness. Individuals with the congenital form of this condition show complete absence of cone cell activity via electroretinography at high light levels. There are at least four genetic causes of congenital ACHM, two of which involve cyclic nucleotide-gated ion channels (ACHM2/ACHM3), a third involves the cone photoreceptor transducin ("GNAT2", ACHM4), and the last remains unknown.
Aside from a complete inability to see color, individuals with complete achromatopsia have a number of other ophthalmologic aberrations. Included among these aberrations are greatly decreased visual acuity (<0.1 or 20/200) in daylight, Hemeralopia, nystagmus, and severe photophobia. The fundus of the eye appears completely normal. Also see Pingelap.