Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Congenital myopathy is a very broad term for any muscle disorder present at birth. This defect primarily affects skeletal muscle fibres and causes muscular weakness and/or hypotonia. Congenital myopathies account for one of the top neuromuscular disorders in the world today, comprising approximately 6 in 100,000 live births every year. As a whole, congenital myopathies can be broadly classified as follows:
- A distinctive abnormality in skeletal muscle fibres on the cellular level; observable via light microscope
- Symptoms of muscle weakness and hypotonia
- Is a congenital disorder, meaning it occurs during development and symptoms present themselves at birth or in early life.
- Is a genetic disorder.
The presentation of Ullrich congenital muscular dystrophy in an affected individual is as follows:
- Muscle weakness
- Difficulty walking
- Contractures (neck)
- Joint looseness
Multicore myopathy, also referred to as minicore myopathy, is associated with small areas of decreased oxidative activities, resulting in areas that appear in this histology as “cores”. These appear through microscopy very similar to central core, however the cores are typically smaller in multicore myopathy. As with congenital fiber type disproportion, patients have a greater number of type 1 fibers. Overall, approximately half of diagnosed individuals report no progression of muscle weakness, while half report a very slow progression.
Physical expression of nemaline myopathy varies greatly, but weakness is usually concentrated in the proximal muscles, particularly respiratory, bulbar and trunk muscles. People with severe NM show obvious symptoms at birth, while those with intermediate or mild NM may initially appear unaffected. Babies with NM are frequently observed to be "floppy" and hypotonic. Children born with NM often gain strength as they grow, though the effect of muscle weakness on body features may become more evident with time. Adults with NM typically have a very slender physique.
The onset of this disease can begin even before birth but is more commonly in childhood or later into adult life. The progression is slow, with symptoms of weakness and walking difficulties sometimes not presenting until middle age. Early symptoms include Gower's sign ("climbing" up the thighs with the hands when rising from the floor) and tiptoe-walking caused by the beginning of contractures.
Bethlem myopathy affects about 1 in 200,000 people. Contractures of the fingers are a typical symptom of Bethlem myopathy but not of the related Ullrich's myopathy (which does include contractures of arms and legs, as does Bethlem myopathy). Serum creatine kinase is elevated in Bethlem myopathy, as there is ongoing muscle cell death. Patients with Bethlem myopathy may expect a normal life span and continued mobility into adulthood. There is currently no cure for this disorder, but the contractures of the legs can be alleviated with heel-cord surgery followed by bracing and regular physical therapy. Repeated surgeries to lengthen the heel cords may be needed as the child grows to adulthood.
Bulbar (throat) muscle weakness is a main feature of nemaline myopathy. Most individuals with severe NM are unable to swallow and receive their nutrition through feeding tubes. Most people with intermediate and mild NM take some or all of their nutrition orally. Bulbar muscle impairment may also lead to difficulty with communication. People with NM often have hypernasal speech as a result of poor closure of the velopharyngeal port (between the soft palate and the back of the throat). Communicative skills may be enhanced through speech therapy, oral prosthetic devices, surgery, and augmentative communication devices. Individuals with NM are usually highly sociable and intelligent, with a great desire to communicate.
Centronuclear myopathies (CNM) are a group of congenital myopathies where cell nuclei are abnormally located in skeletal muscle cells. In CNM the nuclei are located at a position in the center of the cell, instead of their normal location at the periphery.
Symptoms of CNM include severe hypotonia, hypoxia-requiring breathing assistance, and scaphocephaly. Among centronuclear myopathies, the X-linked myotubular myopathy form typically presents at birth, and is thus considered a congenital myopathy. However, some centronuclear myopathies may present later in life.
Hereditary inclusion body myopathies (HIBM) are a heterogeneous group of very rare genetic disorders which have different symptoms. Generally, they are neuromuscular disorders characterized by muscle weakness developing in young adults. Hereditary inclusion body myopathies comprise both autosomal recessive and autosomal dominant muscle disorders that have a variable expression (phenotype) in individuals, but all share similar structural features in the muscles.
HIBMs are a group of muscle wasting disorders, which are uncommon in the general world population. One autosomal recessive form of HIBM is known as IBM2 or GNE myopathy, which is a common genetic disorder amongst people of Iranian Jewish descent. IBM2 has also been identified in other minorities throughout the world, including people of Asian (Japanese and others), European, and South American origin, as well as Muslim people in the Middle Eastern, Palestinian, and Iranian origin. In Japan and many East Asian countries, this disorder is known as Distal Myopathy with Rimmed Vacuoles (DMRV).
IBM2 causes progressive muscle weakness and wasting. Muscle wasting usually starts around the age of 20 – 30 years, although young onset at 17 and old onset at 52 has been recorded. As such, it affects the most productive times of our lives. It can progress to marked disability within 10 – 15 years, confining many people with IBM2 to a wheelchair. The weakness and severity can vary from person to person. In some, weakness in the legs is noticed first. In few others, the hands are weakened more rapidly than the legs. Weakness is progressive, which means the muscle becomes weaker over time. IBM2 does not seem to affect the brain, internal organs or sensation. The quadriceps are relatively spared, and remain strong until the late stages of disease, which is the reason IBM2 is often referred to as Quadriceps Sparing Myopathy (QSM).
Common symptoms include muscle weakness, cramps, stiffness, and tetany.
Some early signs of HIBMs includes:
- Difficulty walking on heels, and difficulty running;
- Weak index finger;
- Frequent loss of balance.
- On muscle biopsy, the typical finding includes inclusion bodies, rimmed vacuoles and accumulation of aberrant proteins similar to those found in senile plaques of Alzheimer's disease (amyloid beta, hyperphosphorylated tau, amongst others)
As with other myopathies, the clinical manifestations of MTM/CNM are most notably muscle weakness and associated disabilities. Congenital forms often present with neonatal low muscle tone, severe weakness, delayed developmental milestones (particularly gross motor milestones such as head control, crawling, and walking) and pulmonary complications (presumably due to weakness of the muscles responsible for respiration). While some patients with centronuclear myopathies remain ambulatory throughout their adult life, others may never crawl or walk and may require wheelchair use for mobility. There is substantial variability in the degree of functional impairment among the various centronuclear myopathies. Although this condition only affects the voluntary muscles, several children have suffered from cardiac arrest, possibly due to the additional stress placed on the heart.
Other observed features have been high arched palate, long digits, bell shaped chest and long face.
Myotubular myopathy only affects muscles and does not impact intelligence in any shape or form.
X-linked myotubular myopathy was traditionally a fatal condition of infancy, with life expectancy of usually less than two years. There appears to be substantial variability in the clinical severity for different genetic abnormalities at that same MTM1 gene. Further, published cases show significant differences in clinical severity among relatives with the same genetic abnormality at the MTM1 gene. Most truncating mutations of MTM1 cause a severe and early lethal phenotype, while some missense mutations are associated with milder forms and prolonged survival (up to 54 years).
Centronuclear myopathies typically have a milder presentation and a better prognosis. Recently, researchers discovered mutations at the gene dynamin 2 (DNM2 on chromosome 19, at site 19p13.2), responsible for the autosomal dominant form of centronuclear myopathy. This condition is now known as dynamin 2 centronuclear myopathy (abbreviated DNM2-CNM). Research has indicated that patients with DNM2-CNM have a slowly progressive muscular weakness usually beginning in adolescence or early adulthood, with an age range of 12 to 74 years.
Myopathies in systemic disease results from several different disease processes including endocrine, inflammatory, paraneoplastic, infectious, drug- and toxin-induced, critical illness myopathy, metabolic, collagen related, and myopathies with other systemic disorders. Patients with systemic myopathies often present acutely or sub acutely. On the other hand, familial myopathies or dystrophies generally present in a chronic fashion with exceptions of metabolic myopathies where symptoms on occasion can be precipitated acutely. Most of the inflammatory myopathies can have a chance association with malignant lesions; the incidence appears to be specifically increased only in patients with dermatomyositis.
There are many types of myopathy. ICD-10 codes are provided here where available.
Ullrich congenital muscular dystrophy is a form of congenital muscular dystrophy.It is associated with variants of type VI collagen, it is commonly associated with muscle weakness and respiratory problems, though cardiac issues are not associated with this type of CMD. It is named after Otto Ullrich, who is also known for the Ullrich-Turner syndrome.
Distal muscular dystrophy (or distal myopathy) is a group of disorders characterized by onset in the hands or feet. Many types involve dysferlin, but it has been suggested that not all cases do.
Types include:
DYSF is also associated with limb-girdle muscular dystrophy type 2B.
Distal muscular dystrophy is a type of muscular dystrophy that affects the muscles of the extremities, the hands, feet, lower arms, or lower legs. The cause of this dystrophy is very hard to determine because it can be a mutation in any of at least eight genes and not all are known yet. These mutations can be inherited from one parent, autosomal dominant, or from both parents, autosomal recessive. Along with being able to inherit the mutated gene, distal muscular dystrophy has slow progress therefore the patient may not know that they have it until they are in their late 40’s or 50’s. There are eight known types of distal muscular dystrophy. They are Welander’s distal myopathy, Finnish (tibial) distal myopathy, Miyoshi distal myopathy, Nonaka distal myopathy, Gowers–Laing distal myopathy, hereditary inclusion-body myositis type 1, distal myopathy with vocal cord and pharyngeal weakness, and ZASP-related myopathy. All of these affect different regions of the extremities and can show up as early as 5 years of age to as late as 50 years old. Doctors are still trying to determine what causes these mutations along with effective treatments.
Presentation of symptoms and signs varies considerably by form (DM1/DM2), severity and even unusual DM2 phenotypes. DM1 symptoms for DM2 include problems with executive function (e.g., organization, concentration, word-finding) and hypersomnia. Conduction abnormalities are more common in DM1 than DM2, but all people are advised to have an annual ECG. Both types are also associated with insulin resistance. Myotonic dystrophy may have a cortical cataract with a blue dot appearance, or a posterior subcapsular cataract.
DM2 is generally milder than DM1, with generally fewer DM2 people requiring assistive devices than DM1 people. In addition, the severe congenital form that affects babies in DM1 has not been found in DM2 and the early onset of symptoms is rarely noted to appear in younger people in the medical literature.
Symptoms may appear at any time from infancy to adulthood. DM causes general weakness, usually beginning in the muscles of the hands, feet, neck, or face. It slowly progresses to involve other muscle groups, including the heart. DM affects a wide variety of other organ systems as well.
Common symptoms of the disease are weakness and atrophy in the distal muscles of the lower limbs which progresses to the hands and arms, then to the trunk, neck and face. Respiratory impairment often follows.
The symptoms of CCD are variable, but usually involve hypotonia (decreased muscle tone) at birth, mild delay in child development (highly variable between cases), weakness of the facial muscles, and skeletal malformations such as scoliosis and hip dislocation.
Symptoms may be present at birth or may appear at any stage of life. There appears to be a growing number of people who do not become symptomatic until adulthood to middle age. While generally not progressive, again there appears to be a growing number of people who do experience a slow clinically significant progression of symptomatology. These cases may hypothetically be due to the large number of gene mutations of ryanodine receptor malfunction, and with continued research may in fact be found to be clinical variants.
In terms of the signs (and symptoms) of oculopharyngeal muscular dystrophy would be consistent with the following:
Though the aforementioned signs/symptoms are the most common, there have been cases though rare, where the peripheral nervous system has had involvement with significant reduction of myelinated fibers
In homozygous cases, this muscular dystrophy is severe and starts earlier in the affected individuals life.
The prolonged muscle contractions, which occur most commonly in the leg muscles in recessive mutations, and more commonly in the hands, face, and eyelids in dominant mutations, are often enhanced by inactivity, and in some forms are relieved by repetitive movement known as "the warm-up effect". This effect often diminishes quickly with rest. Some individuals with myotonia congenita are prone to falling as a result of hasty movements or an inability to stabilize themselves after a loss of balance. During a fall, a person with myotonia congenita may experience partial or complete rigid paralysis that will quickly resolve once the event is over. However, a fall into cold water may render the person unable to move for the duration of submergence. As with myotonic goats, children are more prone to falling than adults, due to their impulsivity.
The two major types of myotonia congenita are distinguished by the severity of their symptoms and their patterns of inheritance. Becker disease usually appears later in childhood than Thomsen disease, and causes more severe myotonia, muscle stiffness and transient weakness. Although myotonia in itself is not normally associated with pain, cramps or myalgia may develop. People with Becker disease often experience temporary attacks of muscle weakness, particularly in the arms and hands, brought on by movement after periods of rest. They may also develop mild, permanent muscle weakness over time. This muscle weakness is not observed in people with Thomsen disease. However, in recent times, as more of the individual mutations that cause myotonia congenita are identified, these limited disease classifications are becoming less widely used.
Early symptoms in a child may include:
- Difficulty swallowing
- Gagging
- Stiff movements that improve when they are repeated
- Frequent falling
- Difficulties opening eyelids after strenuous contraction or crying (von Graefe's sign)
Possible complications may include:
- Aspiration pneumonia (caused by swallowing difficulties)
- Frequent choking or gagging in infants (also caused by swallowing difficulties)
- Abdominal muscle weakness
- Chronic joint problems
- Injury due to falls
Bethlem myopathy is an autosomal dominant myopathy, classified as a congenital form of muscular dystrophy, that is caused by a mutation in one of the three genes coding for type VI collagen. These include COL6A1, COL6A2, and COL6A3.
Signs and symptoms include (for each of the following causes):
- Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like syndrome (MELAS)
- Varying degrees of cognitive impairment and dementia
- Lactic acidosis
- Strokes
- Transient ischemic attacks
- Hearing loss
- Weight loss
- Myoclonic epilepsy and ragged-red fibers (MERRF)
- Progressive myoclonic epilepsy
- Clumps of diseased mitochondria accumulate in muscle fibers and appear as "ragged-red fibers" when muscle is stained with modified Gömöri trichrome stain
- Short stature
- Kearns-Sayre syndrome (KSS)
- External ophthalmoplegia
- Cardiac conduction defects
- Sensorineural hearing loss
- Chronic progressive external ophthalmoplegia (CPEO)
- Progressive ophthalmoparesis
- Symptomatic overlap with other mitochondrial myopathies
Often, every joint in a patient with arthrogryposis is affected; in 84% all limbs are involved, in 11% only the legs, and in 4% only the arms are involved. Every joint in the body, when affected, displays typical signs and symptoms: for example, the shoulder (internal rotation); wrist (volar and ulnar); hand (fingers in fixed flexion and thumb in palm); hip (flexed, abducted and externally rotated, frequently dislocated); elbow (extension and pronation) and foot (clubfoot). Range of motion can be different between joints because of the different deviations. Some types of arthrogryposis like amyoplasia have a symmetrical joint/limb involvement, with normal sensations. The contractures in the joints can result in delayed walking development in the first 5 years, but severity of contractures do not necessarily predict eventual walking ability or inability.
Intelligence is normal to above normal in children with amyoplasia, but it is not known how many of these children have an above normal intelligence, and there is no literature available about the cause of this syndrome. There are a few syndromes like the Freeman-Sheldon and Gordon syndrome, which have craniofacial involvement. The amyoplasia form of arthrogryposis is sometimes accompanied with a midline facial hemangioma.
Arthrogryposis is not a diagnosis but a clinical finding, so this disease is often accompanied with other syndromes or diseases. These other diagnoses could affect any organ in a patient. There are a few slightly more common diagnoses such as pulmonary hypoplasia, cryptorchidism, congenital heart defects, tracheoesophageal fistulas, inguinal hernias, cleft palate, and eye abnormalities.
Myotonic dystrophy is a long term genetic disorder that affects muscle function. Symptoms include gradually worsening muscle loss and weakness. Muscles often contract and are unable to relax. Other symptoms may include cataracts, intellectual disability, and heart conduction problems. In men there may be early balding and an inability to have children.
Myotonic dystrophy is an autosomal-dominant disorder which is typically inherited from a person's parents. There are two main types: type 1 (DM1) due to mutations in the DMPK gene and type 2 (DM2) due to mutations in the CNBP gene. The disorder generally worsens in each generation. A type of DM1 may be apparent at birth. DM2 is generally milder. They are types of muscular dystrophy. Diagnosis is confirmed by genetic testing.
There is no cure. Treatments may include braces or wheelchairs, pacemakers, and non invasive positive pressure ventilation. The medications mexiletine or carbamazepine are occasionally helpful. Pain if it occurs may be treated with tricyclic antidepressants and nonsteroidal anti inflammatory drugs (NSAIDs).
Myotonic dystrophy affects more than 1 in 8,000 people worldwide. While myotonic dystrophy can occur at any age, onset is typically in the 20s and 30s. It is the most common form of muscular dystrophy that begins in adulthood. It was first described in 1909 with the underlying cause of type 1 determined in 1992.
Many patients report that temperature may affect the severity of symptoms, especially cold as being an aggravating factor. However, there is some scientific debate on this subject, and some even report that cold may alleviate symptoms.
Mitochondrial myopathies are types of myopathies associated with mitochondrial disease. On biopsy, the muscle tissue of patients with these diseases usually demonstrate "ragged red" muscle fibers. These ragged-red fibers contain mild accumulations of glycogen and neutral lipids, and may show an increased reactivity for succinate dehydrogenase and a decreased reactivity for cytochrome c oxidase. Inheritance was believed to be maternal (non-Mendelian extranuclear). It is now known that certain nuclear DNA deletions can also cause mitochondrial myopathy such as the OPA1 gene deletion. There are several subcategories of mitochondrial myopathies.