Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Simple l-TGA does not immediately produce any visually identifiable symptoms, but since each ventricle is intended to handle different blood pressures, the right ventricle may eventually hypertrophy due to increased pressure and produce symptoms such as dyspnea or fatigue.
Complex l-TGA may produce immediate or more quickly-developed symptoms, depending on the nature, degree and number of accompanying defect(s). If a right-to-left or bidirectional shunt is present, the list of symptoms may include mild cyanosis.
d vessels can present a large variety of , and/or . The effects may range from a change in blood pressure to an interruption in circulation, depending on the nature and degree of the misplacement and which vessels are involved.
Although "transposed" literally means "swapped", many types of TGV involve vessels that are in abnormal positions, while not actually being swapped with each other. The terms TGV and TGA are most commonly used in reference to dextro-TGA – in which the arteries "are" in swapped positions; however, both terms are also commonly used, though to a slightly lesser extent, in reference to levo-TGA – in which both the arteries and the ventricles are swapped; while other defects in this category are almost never referred to by either of these terms.
It can be diagnosed with an echocardiogram. Patients will have a loss of appetite, turn pale, may feel cold in the lower half of the body due to not enough blood flow.
In mild cases, children may show no signs or symptoms at first and their condition may not be diagnosed until later in life. Some children born with coarctation of the aorta have other heart defects too, such as aortic stenosis, ventricular septal defect, patent ductus arteriosus or mitral valve abnormalities.
Coarctation is about twice as common in boys as it is in girls. It is common in girls who have Turner syndrome.
Symptoms may be absent with mild narrowings (coarctation). When present, they include: difficulty breathing, poor appetite or trouble feeding, failure to thrive. Later on, children may develop symptoms related to problems with blood flow and an enlarged heart. They may experience dizziness or shortness of breath, faint or near-fainting episodes, chest pain, abnormal tiredness or fatigue, headaches, or nosebleeds. They have cold legs and feet or have pain in their legs with exercise (intermittent claudication).
In more severe cases, where severe coarctations, babies may develop serious problems soon after birth because not enough blood can get through the aorta to the rest of their body.
Arterial hypertension in the arms with low blood pressure in the lower extremities is classic. In the lower extremities, weak pulses in the femoral arteries and arteries of the feet are found.
The coarctation typically occurs after the left subclavian artery. However, if situated before it, blood flow to the left arm is compromised and asynchronous or radial pulses of different "strength" may be detected (normal on the right arm, weak or delayed on the left), termed "radio-radial delay". In these cases, a difference between the normal radial pulse in the right arm and the delayed femoral pulse in the legs (either side) may be apparent, whilst no such delay would be appreciated with palpation of both delayed left arm and either femoral pulses. On the other hand, a coarctation occurring after the left subclavian artery will produce synchronous radial pulses, but "radio-femoral delay" will be present under palpation in either arm (both arm pulses are normal compared to the delayed leg pulses).
There are numerous types, differentiated by the extent of the defect. These types are:
- Type I: simple defects leading to communication between the ascending aorta and pulmonic trunk
- Type II: defects that extend to the origin of the right pulmonary artery
- Type III: anomalous origin of the right pulmonary artery from the ascending aorta
It is also classified as simple or complex. Simple defects are those that do not require surgical repair, occur with no other defects, or those that require minor stright-forward repair (ductus arteriosus, atrial septal defect). Complex defects are those that occur with other anatomical anomalies or require non-standard repair.
Symptoms are caused by vascular compression of the airway, esophagus or both. Presentation is often within the first month (neonatal period) and usually within the first 6 months of life. Starting at birth an inspiratory and expiratory stridor (high pitch noise from turbulent airflow in trachea) may be present often in combination with an expiratory wheeze. The severity of the stridor may depend on the patient’s body position. It can be worse when the baby is lying on his back rather than its side. Sometimes the stridor can be relieved by extending the neck (lifting the chin up). Parents may notice that the baby’s cry is hoarse and the breathing noisy. Frequently a persistent cough is present. When the airway obstruction is significant there may be episodes of severe cyanosis (“blue baby”) that can lead to unconsciousness. Recurrent respiratory infections are common and secondary pulmonary secretions can further increase the airway obstruction.
Secondary to compression of the esophagus babies often feed poorly. They may have difficulties in swallowing liquids with choking or regurgitating and increased respiratory obstruction during feeding. Older patients might refuse to take solid food, although most infants with severe symptoms nowadays are operated upon before they are offered solid food.
Occasionally patients with double aortic arches present late (during later childhood or adulthood). Symptoms may mimic asthma.
In dextro-Transposition of the great arteries (dextro-TGA) deoxygenated blood from the right heart is pumped immediately through the aorta and circulated to the body and the heart itself, bypassing the lungs altogether, while the left heart pumps oxygenated blood continuously back into the lungs through the pulmonary artery. In effect, two separate "circular" (parallel) circulatory systems are created. It is called a cyanotic congenital heart defect (CHD) because the newborn infant turns blue from lack of oxygen.
In 2009, The Congenital Heart Surgeons' Society (CHSS) established a North American Registry in order to study a large multi-institutional cohort of patients with AAOCA. This initiative is intended to generate new knowledge concerning the natural history of AAOCA, to describe the outcomes of surgical intervention versus observation in children and young adults with AAOCA, and to generate evidence to support risk stratification among patients with AAOCA and eventually suggest evidence-based guidelines for management.
Double aortic arch (DAA) is a relatively rare congenital cardiovascular malformation. DAA is an of the aortic arch in which two aortic arches form a complete vascular ring that can compress the trachea and/or esophagus. Most commonly there is a larger (dominant) right arch behind and a smaller (hypoplastic) left aortic arch in front of the trachea/esophagus. The two arches join to form the descending aorta which is usually on the left side (but may be right-sided or in the midline). In some cases the end of the smaller left aortic arch closes (left atretic arch) and the vascular tissue becomes a fibrous cord. Although in these cases a complete ring of two patent aortic arches is not present, the term ‘vascular ring’ is the accepted generic term even in these anomalies.
The symptoms are related to the compression of the trachea, esophagus or both by the complete vascular ring. Diagnosis can often be suspected or made by chest x-ray, barium esophagram, or echocardiography. Computed tomography (CT) or magnetic resonance imaging (MRI) show the relationship of the aortic arches to the trachea and esophagus and also the degree of tracheal narrowing. Bronchoscopy can be useful in internally assessing the degree of tracheomalacia. Treatment is surgical and is indicated in all symptomatic patients. In the current era the risk of mortality or significant morbidity after surgical division of the lesser arch is low. However, the preoperative degree of tracheomalacia has an important impact on postoperative recovery. In certain patients it may take several months (up to 1–2 years) for the obstructive respiratory symptoms (wheezing) to disappear.
Persistent truncus arteriosus (or Patent truncus arteriosus or Common arterial trunk), is a rare form of congenital heart disease that presents at birth. In this condition, the embryological structure known as the truncus arteriosus fails to properly divide into the pulmonary trunk and aorta. This results in one arterial trunk arising from the heart and providing mixed blood to the coronary arteries, pulmonary arteries, and systemic circulation.
Anomalous aortic origin of a coronary artery (AAOCA) from the inappropriate sinus of Valsalva with an interarterial, intraconal, or intramural course is a rare heart defect associated with an increased risk of sudden death in children.
-Transposition of the great arteries (L-Transposition of the great arteries), also commonly referred to as congenitally corrected transposition of the great arteries (CC-TGA), is an acyanotic congenital heart defect (CHD) in which the primary arteries (the aorta and the pulmonary artery) are d, with the aorta anterior and to the left of the pulmonary artery; the left and right ventricles with their corresponding atrioventricular valves are also transposed.
Use of the term "corrected" has been disputed by many due to the frequent occurrence of other abnormalities and or acquired disorders in l-TGA patients.
In segmental analysis, this condition is described as discordance (ventricular inversion) with discordance.l-TGA is often referred to simply as transposition of the great arteries (TGA); however, TGA is a more general term which may also refer to dextro-transposition of the great arteries (d-TGA).
This type of aneurysm is typically congenital and may be associated with heart defects. It is sometimes associated with Marfan syndrome or Loeys–Dietz syndrome, but may also result from Ehlers–Danlos syndrome, bicuspid aortic valve, atherosclerosis, hypoplastic left heart syndrome, syphilis, cystic medial necrosis, chest injury, or infective endocarditis.
In a normal heart, oxygen-depleted ("blue") blood is pumped from the right side of the heart, through the pulmonary artery, to the lungs where it is oxygenated. The oxygen-rich ("red") blood then returns to the left heart, via the pulmonary veins, and is pumped through the aorta to the rest of the body, including the heart muscle itself.
With d-TGA, deoxygenated blood from the right heart is pumped immediately through the aorta and circulated to the body and the heart itself, bypassing the lungs altogether, while the left heart pumps oxygenated blood continuously back into the lungs through the pulmonary artery. In effect, two separate "circular" (parallel) circulatory systems are created, rather than the "figure 8" (in series) circulation of a normal cardio-pulmonary system.
-Transposition of the great arteries (d-Transposition of the great arteries, dextro-TGA, or d-TGA), sometimes also referred to as complete transposition of the great arteries, is a birth defect in the large arteries of the heart. The primary arteries (the aorta and the pulmonary artery) are d.
It is called a cyanotic congenital heart defect (CHD) because the newborn infant turns blue from lack of oxygen.
In segmental analysis, this condition is described as with , or just ventriculoarterial discordance.
d-TGA is often referred to simply as transposition of the great arteries (TGA); however, TGA is a more general term which may also refer to levo-transposition of the great arteries (l-TGA).
Another term commonly used to refer to both d-TGA and l-TGA is transposition of the great vessels (TGV), although this term might have an even broader meaning than TGA.
Anatomical changes associated with this disorder includes:
- single artery arising from the two ventricles which gives rise to both the aortic and pulmonary vessels
- abnormal truncal valve
- right sided aortic arch in about 30% of cases (not shown)
- large ventricular septal defect
- pulmonary hypertension
- complete mixing occurring at level of the great vessel
- right-to-left shunting of blood
At birth, the ductus arteriosus is still open, and there is higher than normal resistance to blood flow in the lungs. This allows for adequate oxygenation via mixing between the atria and a normal appearance at birth. When the ductus begins to close and pulmonary vascular resistance decreases, blood flow through the ductus is restricted and flow to the lungs is increased, reducing oxygen delivery to the systemic circulation. This results in cyanosis and respiratory distress which can progress to cardiogenic shock. The first symptoms are cyanosis that does not respond to oxygen administration or poor feeding. Peripheral pulses may be weak and extremities cool to the touch.
HLHS often co-occurs with low birth weight and premature birth.
In neonates with a small atrial septal defect, termed "restrictive", there is inadequate mixing of oxygenated and deoxygenated blood. These neonates quickly decompensate and develop acidosis and cyanosis.
On EKG, right axis deviation and right ventricular hypertrophy are common, but not indicative of HLHS. Chest x-ray may show a large heart (cardiomegaly) or increased pulmonary vasculature. Neonates with HLHS do not typically have a heart murmur, but in some cases, a pulmonary flow murmur or tricuspid regurgitation murmur may be audible.
Co-occurring tricuspid regurgitation or right ventricular dysfunction can cause hepatomegaly to develop.
Aortopulmonary septal defect is a rare congenital heart disorder accounting for only 0.1-0.3% of congenital heart defects worldwide. It is characterized by a communication between the aortic and pulmonary arteries, with preservation of two normal semilunar valves. It is the result of an incomplete separation of the aorticopulmonary trunk that normally occurs in early fetal development with formation of the spiral septum. Aortopulmonary septal defects occur in isolation in about half of cases, the remainder are associated with more complex heart abnormalities.
There are three types of aortic coarctations:
1. Preductal coarctation: The narrowing is proximal to the ductus arteriosus. Blood flow to the aorta that is distal to the narrowing is dependent on the ductus arteriosus; therefore severe coarctation can be life-threatening. Preductal coarctation results when an intracardiac anomaly during fetal life decreases blood flow through the left side of the heart, leading to hypoplastic development of the aorta. This is the type seen in approximately 5% of infants with Turner syndrome.
2. Ductal coarctation: The narrowing occurs at the insertion of the ductus arteriosus. This kind usually appears when the ductus arteriosus closes.
3. Postductal coarctation: The narrowing is distal to the insertion of the ductus arteriosus. Even with an open ductus arteriosus, blood flow to the lower body can be impaired. This type is most common in adults. It is associated with notching of the ribs (because of collateral circulation), hypertension in the upper extremities, and weak pulses in the lower extremities. Postductal coarctation is most likely the result of the extension of a muscular artery (ductus arteriosus) into an elastic artery (aorta) during fetal life, where the contraction and fibrosis of the ductus arteriosus upon birth subsequently narrows the aortic lumen.
Aortic coarctation and aortic stenosis are both forms of aortic narrowing. In terms of word root meanings, the names are not different, but a conventional distinction in their usage allows differentiation of clinical aspects. This spectrum is dichotomized by the idea that aortic coarctation occurs in the aortic arch, at or near the ductus arteriosis, whereas aortic stenosis occurs in the aortic root, at or near the aortic valve. This naturally could present the question of the dividing line between a postvalvular stenosis and a preductal coarctation; nonetheless, the dichotomy has practical use, as most defects are either one or the other.
Common symptoms include:
- tachycardia (a heart rate exceeding the normal resting rate)
- respiratory problems
- dyspnea (shortness of breath)
- continuous "machine-like" (also described as "rolling-thunder" and "to-and-fro") heart murmur (usually from aorta to pulmonary artery, with higher flow during systole and lower flow during diastole)
- cardiomegaly (enlarged heart, reflecting ventricular dilation and volume overload)
- left subclavicular thrill
- bounding pulse
- widened pulse pressure
- increased cardiac output
- increased systolic pressure
- poor growth
- differential cyanosis, i.e. cyanosis of the lower extremities but not of the upper body.
Patients typically present in good health, with normal respirations and heart rate. If the PDA is moderate or large, widened pulse pressure and bounding peripheral pulses are frequently present, reflecting increased left ventricular stroke volume and diastolic run-off of blood into the (initially lower-resistance) pulmonary vascular bed. Prominent suprasternal and carotid pulsations may be noted secondary to increased left ventricular stroke volume.
Signs and symptoms of Eisenmenger syndrome include the following:
- Cyanosis (a blue tinge to the skin resulting from lack of oxygen)
- High red blood cell count
- Swollen or clubbed finger tips (clubbing)
- Fainting (also known as syncope)
- Heart failure
- Abnormal heart rhythms
- Bleeding disorders
- Coughing up blood
- Iron deficiency
- Infections (endocarditis and pneumonia)
- Kidney problems
- Stroke
- Gout (rarely) due to increased uric acid resorption and production with impaired excretion
- Gallstones
If unruptured, this type of aneurysm may be asymptomatic and therefore go undetected until symptoms appear or medical imaging is performed for other reasons. A ruptured aneurysm typically leads to an aortocardiac shunt and progressively worsening heart failure.
An aneurysm of the aortic sinus may rupture due to infective endocarditis involving the aortic wall and tertiary-stage syphilis.
The manifestations appear depending on the site where the sinus has ruptured. For example, if the sinus ruptures in a low pressure area like the right atrium or right ventricle then a continuous type of murmur is heard. The murmur is located in the left parasternal region mainly confined to the lower sternum. It is also accompanied by a superficial thrill. A ruptured Sinus of Valsalva abscess represents a surgical emergency.
There is considerable variability in the phenotype of Loeys–Dietz syndrome, from mild features to severe systemic abnormalities. The primary manifestations of Loeys–Dietz syndrome are arterial tortuosity (winding course of blood vessels), widely spaced eyes (hypertelorism), wide or split uvula, and aneurysms at the aortic root. Other features may include cleft palate and a blue/gray appearance of the white of the eyes. Cardiac defects and club foot may be noted at birth.
There is overlap in the manifestations of Loeys–Dietz and Marfan syndromes, including increased risk of ascending aortic aneurysm and aortic dissection, abnormally long limbs and fingers, and dural ectasia (a gradual stretching and weakening of the dura mater that can cause abdominal and leg pain). Findings of hypertelorism (widely spaced eyes), bifrid or split uvula, and skin findings such as easy bruising or abnormal scars may distinguish Loys-Dietz from Marfan syndrome.
Findings of Loys-Dietz syndrome may include:
- Skeletal/spinal malformations: craniosynositosis, Scoliosis, spinal instability and spondylolisthesis, Kyphosis
- Sternal abnormalities: pectus excavatum, pectus carinatum
- Contractures of fingers and toes (camptodactyly)
- Long fingers and lax joints
- Weakened or missing eye muscles (strabismus)
- Club foot
- Premature fusion of the skull bones (craniosynostosis)
- Joint hypermobility
- Congenital heart problems including patent ductus arteriosus (connection between the aorta and the lung circulation) and atrial septal defect (connection between heart chambers)
- Translucency of the skin with velvety texture
- Abnormal junction of the brain and medulla (Arnold-Chiari malformation)
- Bicuspid aortic valves
- Criss-crossed pulmonary arteries
Left to right shunting heart defects include:
- Ventricular septal defect (VSD) (30% of all congenital heart defects)
- Atrial septal defect (ASD)
- Atrioventricular septal defect (AVSD)
- Patent ductus arteriosus (PDA)
- Previously, Patent ductus arteriosus (PDA) was listed as acyanotic but in actuality it can be cyanotic due to pulmonary hypertension resulting from the high pressure aorta pumping blood into the pulmonary trunk, which then results in damage to the lungs which can then result in pulmonary hypertension as well as shunting of blood back to the right ventricle. This consequently results in less oxygenation of blood due to alveolar damage as well as oxygenated blood shunting back to the right side of the heart, not allowing the oxygenated blood to pass through the pulmonary vein and back to the left atrium.
- (Edit - this is called Eisenmenger's syndrome and can occur with Atrial septal defect and ventricular septal defect as well (actually more common in ASD and VSD) therefore PDA can still be listed as acyanotic as, acutely, it is)
Others:
- levo-Transposition of the great arteries (l-TGA)
Acyanotic heart defects without shunting include:
- Pulmonary stenosis (a narrowing of the pulmonary valve)
- Aortic stenosis
- Coarctation of the aorta
Interrupted aortic arch is a very rare heart defect (affecting 3 per million live births) in which the aorta is not completely developed. There is a gap between the ascending and descending thoracic aorta. In a sense it is the complete form of a coarctation of the aorta. Almost all patients also have other cardiac anomalies, including a ventricular septal defect (VSD), aorto-pulmonary window, and truncus arteriosus. Interrupted aortic arch is often associated with DiGeorge syndrome.