Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In terms of the symptoms of Hemophilia A there are internal or external bleeding episodes. Individuals with more severe haemophilia suffer more severe and more frequent bleeding, while others with mild haemophilia typically suffer more minor symptoms except after surgery or serious trauma. Moderate haemophiliacs have variable symptoms which manifest along a spectrum between severe and mild forms.
Prolonged bleeding from a venepuncture or heelprick is another common early sign of haemophilia, these signs may lead to blood tests which indicates haemophilia. In other people, especially those with moderate or mild haemophilia any trauma will lead to the first serious "bleed". Haemophilia leads to a severely increased risk of prolonged bleeding from common injuries, or in severe cases bleeding may be spontaneous and without obvious cause. Bleeding may occur anywhere in the body, superficial bleeding such as those caused by abrasions, or shallow lacerations may be prolonged and the scab may easily be broken up due to the lack of fibrin, which may cause re-bleeding. While superficial bleeding is troublesome, some of the more serious sites of bleeding are:
- Joints
- Muscles
- Digestive tract
- Brain
Muscle and joint haemorrhages - or haemarthrosis - are indicative of haemophilia, while digestive tract and cerebral haemorrhages are also germane to other coagulation disorders.Though typically not life-threatening, joint bleeding is one of the most serious symptoms of haemophilia. Repeated bleeds into a joint capsule can cause permanent joint damage and disfigurement resulting in chronic arthritis and disability. Joint damage is not a result of blood in the capsule but rather the healing process. When blood in the joint is broken down by enzymes in the body, the bone in that area is also degraded, this exerts a lot of pain upon the person afflicted with the disease.
The presentation of hemophilia B is consistent with easy bruising, urinary tract bleed and nosebleeds. Additionally, the affected individual may experience bleeding into their joints.
Characteristic symptoms vary with severity. In general symptoms are internal or external bleeding episodes, which are called "bleeds". People with more severe haemophilia suffer more severe and more frequent bleeds, while people with mild haemophilia usually suffer more minor symptoms except after surgery or serious trauma. In cases of moderate haemophilia symptoms are variable which manifest along a spectrum between severe and mild forms.
In both haemophilia A and B, there is spontaneous bleeding but a normal bleeding time, normal prothrombin time, normal thrombin time, but prolonged partial thromboplastin time. Internal bleeding is common in people with severe haemophilia and some individuals with moderate haemophilia. The most characteristic type of internal bleed is a joint bleed where blood enters into the joint spaces. This is most common with severe haemophiliacs and can occur spontaneously (without evident trauma). If not treated promptly, joint bleeds can lead to permanent joint damage and disfigurement. Bleeding into soft tissues such as muscles and subcutaneous tissues is less severe but can lead to damage and requires treatment.
Children with mild to moderate haemophilia may not have any signs or symptoms at birth especially if they do not undergo circumcision. Their first symptoms are often frequent and large bruises and haematomas from frequent bumps and falls as they learn to walk. Swelling and bruising from bleeding in the joints, soft tissue, and muscles may also occur. Children with mild haemophilia may not have noticeable symptoms for many years. Often, the first sign in very mild haemophiliacs is heavy bleeding from a dental procedure, an accident, or surgery. Females who are carriers usually have enough clotting factors from their one normal gene to prevent serious bleeding problems, though some may present as mild haemophiliacs.
Haemophilia A (or hemophilia A) is a genetic deficiency in clotting factor VIII, which causes increased bleeding and usually affects males. In the majority of cases it is inherited as an X-linked recessive trait, though there are cases which arise from spontaneous mutations.
Factor VIII medication may be used to treat and prevent bleeding in people with haemophilia A.
In terms of the signs/symptoms of haemophilia C, unlike individuals with Haemophilia A and B, people affected by it are not ones to bleed spontaneously. In these cases, haemorrhages tend to happen after a major surgery or injury. However, people affected with haemophilia C might experience symptoms closely related to those of other forms of haemophilia such as the following:
Haemophilia C (also known as plasma thromboplastin antecedent (PTA) deficiency or Rosenthal syndrome) is a mild form of haemophilia affecting both sexes, due to factor XI deficiency. However, it predominantly occurs in Jewish people of Ashkenazi descent. It is the fourth most common coagulation disorder after von Willebrand's disease and haemophilia A and B. In the United States, it is thought to affect 1 in 100,000 of the adult population, making it 10% as common as haemophilia A.
Symptoms may differ greatly, as apparently modifiers control to some degree the amount of FVII that is produced. Some affected individuals have few or no symptoms while others may experience life-threatening bleeding. Typically this bleeding disorder manifests itself as a tendency to easy bruising, nose bleeding, heavy and prolonged menstruation, and excessive bleeding after dental or surgical interventions. Newborns may bleed in the head, from the umbilicus, or excessively after circumcision. Other bleeding can be encountered in the gut, in muscles or joints, or the brain. Hematuria may occur.
While in congenital disease symptoms may be present at birth or show up later, in patients with acquired FVII deficiency symptoms typically show up in later life.
About 3-4% of patients with FVII deficiency may also experience thrombotic episodes.
Haemophilia B (or hemophilia B) is a blood clotting disorder caused by a mutation of the factor IX gene, leading to a deficiency of factor IX. It is the second-most common form of haemophilia, rarer than haemophilia A. Haemophilia B was first recognized as a different kind of haemophilia in 1952. It is sometimes called Christmas disease, named after Stephen Christmas, the first patient described with this disease. In addition, the first report of its identification was published in the Christmas edition of the "British Medical Journal".
The various types of vWD present with varying degrees of bleeding tendency, usually in the form of easy bruising, nosebleeds, and bleeding gums. Women may experience heavy menstrual periods and blood loss during childbirth.
Severe internal bleeding and bleeding into joints are uncommon in all but the most severe type, vWD type 3.
There are various symptoms that are presented and are typically associated to a specific site that they appear at. Hypoprothrombinemia is characterized by a poor blood clotting function of prothrombin. Some symptoms are presented as severe, while others are mild, meaning that blood clotting is slower than normal. Areas that are usually affected are muscles, joints, and the brain, however, these sites are more uncommon.
The most common symptoms include:
1. Easy bruising
2. Oral mucosal bleeding - Bleeding of the membrane mucus lining inside of the mouth.
3. Soft tissue bleeding.
4. Hemarthrosis - Bleeding in joint spaces.
5. Epistaxis - Acute hemorrhages from areas of the nasal cavity, nostrils, or nasopharynx.
6. Women with this deficiency experience menorrhagia: prolonged, abnormal heavy menstrual bleeding. This is typically a symptom of the disorder when severe blood loss occurs.
Other reported symptoms that are related to the condition:
1. Prolonged periods of bleeding due to surgery, injury, or post birth.
2. Melena - Associated with acute gastrointestinal bleeding, dark black, tarry feces.
3. Hematochezia - Lower gastrointestinal bleeding, passage of fresh, bright red blood through the anus secreted in or with stools. If associated with upper gastrointestinal bleeding, suggestive of a more life-threatening issue.
Type I: Severe hemorrhages are indicators of a more severe prothrombin deficiency that account for muscle hematomas, intracranial bleeding, postoperative bleeding, and umbilical cord hemorrhage, which may also occur depending on the severity, respectively.
Type II: Symptoms are usually more capricious, but can include a variety of the symptoms described previously. Less severe cases of the disorder typically do not involve spontaneous bleeding.
Haemophilia, also spelled hemophilia, is a mostly inherited genetic disorder that impairs the body's ability to make blood clots, a process needed to stop bleeding. This results in people bleeding longer after an injury, easy bruising, and an increased risk of bleeding inside joints or the brain. Those with a mild case of the disease may have symptoms only after an accident or during surgery. Bleeding into a joint can result in permanent damage while bleeding in the brain can result in long term headaches, seizures, or a decreased level of consciousness.
There are two main types of haemophilia: haemophilia A, which occurs due to not enough clotting factor VIII, and haemophilia B, which occurs due to not enough clotting factor IX. They are typically inherited from one's parents through an X chromosome with a nonfunctional gene. Rarely a new mutation may occur during early development or haemophilia may develop later in life due to antibodies forming against a clotting factor. Other types include haemophilia C, which occurs due to not enough factor XI, and parahaemophilia, which occurs due to not enough factor V. Acquired haemophilia is associated with cancers, autoimmune disorders, and pregnancy. Diagnosis is by testing the blood for its ability to clot and its levels of clotting factors.
Prevention may occur by removing an egg, fertilizing it, and testing the embryo before transferring it to the uterus. Treatment is by replacing the missing blood clotting factors. This may be done on a regular basis or during bleeding episodes. Replacement may take place at home or in hospital. The clotting factors are made either from human blood or by recombinant methods. Up to 20% of people develop antibodies to the clotting factors which makes treatment more difficult. The medication desmopressin may be used in those with mild haemophilia A. Studies of gene therapy are in early human trials.
Haemophilia A affects about 1 in 5,000–10,000, while haemophilia B affects about 1 in 40,000, males at birth. As haemophilia A and B are X-linked recessive disorders females are very rarely severely affected. Some females with a nonfunctional gene on one of the X chromosomes may be mildly symptomatic. Haemophilia C occurs equally in both sexes and is mostly found in Ashkenazi Jews. In the 1800s haemophilia was common within the royal families of Europe. The difference between haemophilia A and B was determined in 1952. The word is from the Greek "haima" αἷμα meaning blood and "philia" φιλία meaning love.
In of study of 32 individuals diagnoses with hypodysfibrinogenemia, 41% presented with episodic bleeding, 43% presented with episodic thrombosis, and 16% were asymptomatic, being detected by abnormal blood tests. Bleeding and thrombosis generally begin in adulthood with the average age at the time of presentation and diagnosis being 32 years. Bleeding is more frequent and severe in women of child-bearing age; these women may suffer miscarriages, menometrorrhagia, and excessive bleeding during child birth and/or the postpartum period. Excessive bleeding following major or minor surgery, including dental extractions, occurs in both females and males with the disorder. Thrombotic complications of the disorder are often (~50%) recurrent and can involve central and peripheral arteries, deep and superficial veins. Thrombotic events may be serious and involve occlusion of a cerebral artery leading to stroke, splanchnic venous thrombosis, and pulmonary thrombosis presumptively secondary to deep vein thrombosis.
Individuals with congenital hypfibringenemia often lack any symptoms are detected by routine lab testing of fibrinogen or when tested for it because close relatives have symptomatic hypofibrinogenmeia. Indeed, studies indicate that, among family members with the identical congenital hypofibrinogenemia mutation, some never exhibit symptoms and those that are symptomatic develop symptoms only as adults.
Individuals with this disorder are usually less symptomatic than patients with other fibrinogen disorders because their fibrinogen levels are generally sufficient to prevent spontaneous bleeding. Those with particularly low blood fibrinogen levels (<0.5 gram/liter) may develop serious bleeding spontaneously and many with the disorder do so following trauma or surgery. Depending on their fibrinogen levels, women with the disorder may also bleed excessively during delivery and the postpartum period; in rare cases, they may have an increased risk of suffering miscarriages. Individuals with the disorder also suffer thrombotic events which may include blockage of large arteries in relatively young patients who have high levels of cardiovascular risk factors. The thrombi which form in these individuals are unstable, tend to embolize, and may therefore lead to thromboembolic events such as pulmonary embolism. Both bleeding and thrombotic events can occur at separate times or even concurrently in the same individual with the disorder.
Type 1 vWD (60-80% of all vWD cases) is a quantitative defect which is heterozygous for the defective gene. It can arise from failure to secrete vWF into the circulation or from vWF being cleared more quickly than normal. Decreased levels of vWF are detected at 20-50% of normal, i.e. 20-50 IU.
Many patients are asymptomatic or may have mild symptoms and not have clearly impaired clotting, which might suggest a bleeding disorder. Often, the discovery of vWD occurs incidentally to other medical procedures requiring a blood work-up. Most cases of type 1 vWD are never diagnosed due to the asymptomatic or mild presentation of type I and most people usually end up leading a normal life free of complications, with many being unaware that they have the disorder.
Trouble may, however, arise in some patients in the form of bleeding following surgery (including dental procedures), noticeable easy bruising, or menorrhagia (heavy menstrual periods). The minority of cases of type 1 may present with severe hemorrhagic symptoms.
While it is indicated that people with FXII deficiency are generally asymptomatic, studies in women with recurrent miscarriages suggest an association with FXII deficiency.
The condition is of importance in the differential diagnosis to other bleeding disorders, specifically the hemophilias: hemophilia A with a deficiency in factor VIII or antihemophilic globulin, hemophilia B with a deficiency in factor IX (Christmas disease), and hemophilia C with a deficiency in factor XI. Other rare forms of bleeding disorders are also in the differential diagnosis.
There is concern that individuals with FXII deficiency are more prone to thrombophilic disease, however, this is at variance with a long term study from Switzerland.
Many cases of congenital dysfibrinogenemia are asymptomatic. Since manifestations of the disorder generally occur in early adulthood or middle-age, younger individuals with a gene mutation causing it may not have had time to develop symptoms while previously asymptomatic individuals of advanced age with such a mutation are unlikely to develop symptoms. Bleeding episodes in most cases of this disorder are mild and commonly involve easy bruising and menorrhagia. Less common manifestations of bleeding may be severe or even life-threatening; these include excessive bleeding after tooth extraction, surgery, vaginal birth, and miscarriage. Rarely, these individuals may suffer hemarthrosis or cerebral hemorrhage. In one study of 37 individuals >50 years old afflicted with this disorder, 19% had a history of thrombosis. Thrombotic complications occur in both arteries and veins and include transient ischemic attack, ischemic stroke, myocardial infarction, retinal artery thrombosis, peripheral artery thrombosis, and deep vein thrombosis. In one series of 33 individuals with a history of thrombosis due to congenital dysfibrinogenemia, five developed chronic pulmonary hypertension due to ongoing pulmonary embolism probably stemming form deep vein thrombosis. About 26% of individuals with the disorder suffer both bleeding and thrombosis complications.
Factor VII deficiency is a bleeding disorder characterized by a lack in the production of Factor VII (FVII) (proconvertin), a protein that causes blood to clot in the coagulation cascade. After a trauma factor VII initiates the process of coagulation in conjunction with tissue factor (TF/factor III) in the extrinsic pathway.
The condition may be inherited or acquired. It is the most common of the rare congenital coagulation disorders.
Hypodysfibrinogenemia, also termed congenital hypodysfibrinogenemia, is a rare hereditary fibrinogen disorder cause by mutations in one or more of the genes that encode a factor critical for blood clotting, fibrinogen. These mutations result in the production and circulation at reduced levels of fibrinogen at least some of which is dysfunctional. Hypodysfibrinogenemia exhibits reduced penetrance, i.e. only some family members with the mutated gene develop symptoms.
The disorder is similar to a form of dysfibrinogenemia termed congenital dysfibrinogenemia. However, congenital dysfibrinogenemia differs form hypodysfibrinogenemia in four ways. Congenital dysfibrinogenemia involves: the circulation at normal levels of fibrinogen at least some of which is dysfunctional; a different set of causative gene mutations; a somewhat different mix of clinical symptoms; and a much lower rate of penetrance.
Hypodysfibrinogenemia causes episodes of pathological bleeding and thrombosis due not only to low levels of circulating fibrinogen but also to the dysfunction of a portion of the circulating fibrinogen. The disorder can lead to very significant bleeding during even minor surgical procedures and women afflicted with the disorderoften suffer significant bleeding during and after giving child birth, higher rates of miscarriages, and menorrhagia, i.e. abnormally heavy bleeding during the menstrual period.
Factor XII deficiency (also Hageman factor deficiency) is a deficiency in the production of factor XII (FXII), a plasma glycoprotein and clotting factor that participates in the coagulation cascade and activates factor XI. FXII appears to be not essential for blood clotting, as individuals with this condition are usually asymptomatic and form blood clots in vivo. FXII deficiency tends to be identified during presurgical laboratory screening for bleeding disorders.
The condition can be inherited or acquired.
As this is a disorder that is present in an individual from birth, there are no warning signs to look for. The first symptom usually seen is hemorrhage from the umbilical cord that is difficult to stop.
Other symptoms include:
- Nasal and oral mucosa bleeds
- Gastrointestinal bleeding
- Excessive/spontaneous bleeding or bruising from minor injury
- Prolonged menstruation in women
- Spontaneous abortion during pregnancy
- CNS hemorrhaging
Spontaneous bleeding of the mouth, nose, and gastrointestinal tract are common. Since blood clots can not be formed, minor injuries tend to lead to excessive bleeding or bruising. The biggest concern for individuals with afibrinogenemia is CNS hemorrhage, bleeding in the brain, which can be fatal.
Many of these symptoms are chronic, and will continue to occur for the entirety of the affected individual's life.
The dysfibrinogenemias consist of three types of fibrinogen disorders in which a critical blood clotting factor, fibrinogen, circulates at normal levels but is dysfunctional. Congenital dysfibrinogenemia is an inherited disorder in which one of the parental genes produces an abnormal fibrinogen. This fibrinogen interferes with normal blood clotting and/or lyses of blood clots. The condition therefore may cause pathological bleeding and/or thrombosis. Acquired dysfibrinogenemia is a non-hereditary disorder in which fibrinogen is dysfunctional due to the presence of liver disease, autoimmune disease, a plasma cell dyscrasias, or certain cancers. It is associated primarily with pathological bleeding. Hereditary fibrinogen Aα-Chain amyloidosis is a sub-category of congenital dysfibrinogenemia in which the dysfunctional fibrinogen does not cause bleeding or thrombosis but rather gradually accumulates in, and disrupts the function of, the kidney.
Congenital dysfibrinogenmia is the commonest of these three disorders. Some 100 different genetic mutations occurring in more than 400 families have been found to cause it. All of these mutations as well as those causing hereditary fibrinogen Aα-Chain amyloidosis exhibit partial penetrance, i.e. only some family members with one of these mutant genes develop dysfibrinogenemia-related symptoms. While both of these congenital disorders as well as acquired dysfibrinogenemia are considered very rare, it is estimated that ~0.8% of individuals with venous thrombosis have either a congenital or acquired dysfibrinogenemia. Hence, the dysfibrinogenemia disorders may be highly under-diagnosed conditions due to isolated thrombotic events that are not appreciated as reflecting an underlying fibrinogen disorder.
Congenital dysfibrinogenemia is distinguished from a similar inherited disorder, congenital hypodysfibrinogenemia. Both disorders involve the circulation of dysfunctional fibrinogen but in congenital hypodysfibrinogenemia plasma fibrinogen levels are low while in congenital dysfibrinogenemia they are normal. Furthermore, the two disorders involve different gene mutations and inheritance patterns as well as somewhat different symptoms.
Hypoprothrombinemia is found to present itself as either inherited or acquired, and is a decrease in the synthesis of prothrombin. In the process of inheritance, it marks itself as an autosomal recessive disorder, meaning that both parents must be carriers of the defective gene in order for the disorder to be present in a child. Prothrombin is a glycoprotein that occurs in blood plasma and functions as a precursor to the enzyme, thrombin, which acts to convert fibrinogen into fibrin, therefore, fortifying clots. This clotting process is known as coagulation.
The mechanism specific to prothrombin (factor II) includes the proteolytically cleaving, breakdown of proteins into smaller polypeptides or amino acids, of this coagulation factor in order to form thrombin at the beginning of the cascade, leading to stemming of blood loss. A mutation in factor II would essentially lead to hypoprothrombinemia. The mutation is presented on chromosome 11.
Areas where the disease has been shown to present itself at include the liver, since the glycoprotein is stored in this area.
Acquired cases are results from an isolated factor II deficiency. Specific cases include:
1. Vitamin-K Deficiency: In the liver, vitamin K plays an important role in the synthesis of coagulation factor II. Body's capacity in the storage of vitamin K is typically very low. Vitamin K-dependent coagulation factors have a very short half-life, sometimes leading to a deficiency when a depletion of vitamin K occurs. The liver synthesizes inactive precursor proteins in the absence of vitamin K (liver disease). Vitamin K deficiency leads to impaired clotting of the blood and in some cases, causes internal bleeding without an associated injury.
2. Disseminated Intravascular Coagulation (DIC): Involving abnormal, excessive generation of thrombin and fibrin within the blood. Relative to hypoprothrombinemia, due to increased platelet aggregation and coagulation factor consumption involved in the process.
3. Anticoagulants: Warfarin Overdose: Used as a treatment for prevention of blood clots, however, like most drugs, side effects have been shown to increase risk of excessive bleeding by functioning in the disruption of hepatic synthesis of coagulation factors II, VII, IX, and X. Vitamin K is an antagonist to warfarin drug, reversing its activity, causing it to be less effective in the process of blood clotting. Warfarin intake has been shown to interfere with Vitamin-K metabolism.
Congenital afibrinogenemia is a rare, genetically inherited blood fibrinogen disorder in which the blood does not clot normally due to the lack of fibrinogen, a blood protein necessary for coagulation. This disorder is autosomal recessive, meaning that two unaffected parents can have a child with the disorder. The lack of fibrinogen expresses itself with excessive and, at times, uncontrollable bleeding.
In medicine (hematology), bleeding diathesis (h(a)emorrhagic diathesis) is an unusual susceptibility to bleed (hemorrhage) mostly due to hypocoagulability, in turn caused by a coagulopathy (a defect in the system of coagulation). Several types are distinguished, ranging from mild to lethal. Also, bleeding diathesis can be caused by thinning of the skin or impaired wound healing.