Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The anemia associated with CDA type II can range from mild to severe, and most affected individuals have jaundice, hepatosplenomegaly, and the formation of hard deposits in the gallbladder called bilirubin gallstones. This form of the disorder is usually diagnosed in adolescence or early adulthood. An abnormal buildup of iron typically occurs after age 20, leading to complications including heart disease, diabetes, and cirrhosis.
Many affected individuals have yellowing of the skin and eyes (jaundice) and an enlarged liver and spleen (hepatosplenomegaly). This condition also causes the body to absorb too much iron, which builds up and can damage tissues and organs. In particular, iron overload can lead to an abnormal heart rhythm (arrhythmia), congestive heart failure, diabetes, and chronic liver disease (cirrhosis). Rarely, people with CDA type I are born with skeletal abnormalities, most often involving the fingers and/or toes.
Congenital dyserythropoietic anemia type II (CDA II), or hereditary erythroblastic multinuclearity with positive acidified serum lysis test (HEMPAS) is a rare genetic anemia in humans characterized by hereditary erythroblastic multinuclearity with positive acidified serum lysis test.
The symptoms and signs of congenital dyserythropoietic anemia are consistent with:
- Tiredness (fatigue)
- Weakness
- Pale skin
Congenital dyserythropoietic anemia type I (CDA I) is a disorder of blood cell production, particularly of
the production of erythroblasts, which are the precursors of the red blood cells (RBCs).
The signs and symptoms of CDA type III tend to be milder than those of the other types. Most affected individuals do not have hepatosplenomegaly, and iron does not build up in tissues and organs. In adulthood, abnormalities of a specialized tissue at the back of the eye (the retina) can cause vision impairment. Some people with CDA type III also have a blood disorder known as monoclonal gammopathy, which can lead to a cancer of white blood cells (multiple myeloma).
Congenital dyserythropoietic anemia (CDA) is a rare blood disorder, similar to the thalassemias. CDA is one of many types of anemia, characterized by ineffective erythropoiesis, and resulting from a decrease in the number of red blood cells (RBCs) in the body and a less than normal quantity of hemoglobin in the blood.
CDA type IV is characterized by mild to moderate splenomegaly. Hemoglobin is very low and patients are transfusion dependent. MCV is normal or mildly elevated. Erythropoiesis is normoblastic or mildly to moderately megaloblastic. Nonspecific erythroblast dysplasia is present.
Congenital dyserythropoietic anemia type III (CDA III) is a rare autosomal dominant disorder characterized by macrocytic anemia, bone marrow erythroid hyperplasia and giant multinucleate erythroblasts. New evidence suggests that this may be passed on recessively as well.
Diamond–Blackfan anemia is characterized by normocytic or macrocytic anemia (low red blood cell counts) with decreased erythroid progenitor cells in the bone marrow. This usually develops during the neonatal period. About 47% of affected individuals also have a variety of congenital abnormalities, including craniofacial malformations, thumb or upper limb abnormalities, cardiac defects, urogenital malformations, and cleft palate. Low birth weight and generalized growth delay are sometimes observed. DBA patients have a modest risk of developing leukemia and other malignancies.
Congenital dyserythropoietic anemia type IV is an autosomal dominant inherited red blood cell disorder characterized by ineffective erythropoiesis and hemolysis resulting in anemia. Circulating erythroblasts and erythroblasts in the bone marrow show various morphologic abnormalities. Affected individuals with CDAN4 also have increased levels of fetal hemoglobin.
Diamond–Blackfan anemia (DBA) is a congenital erythroid aplasia that usually presents in infancy. DBA causes low red blood cell counts (anemia), without substantially affecting the other blood components (the platelets and the white blood cells), which are usually normal. This is in contrast to Shwachman–Bodian–Diamond syndrome, in which the bone marrow defect results primarily in neutropenia, and Fanconi anemia, where all cell lines are affected resulting in pancytopenia.
A variety of other congenital abnormalities may also occur in DBA.
The presentation of this disorder entails anemia, arthritis, hepatic anomalies, and recurrent infections are clinical signs of the disease. Iron overload occurs mainly in the liver, heart, pancreas, thyroid, and kidney
Atransferrinemia, also called familial hypotransferrinemia, is an autosomal recessive metabolic disorder in which there is an absence of transferrin, a plasma protein that transports iron through the blood.
Atransferrinemia is characterized by anemia and hemosiderosis in the heart and liver. The iron damage to the heart can lead to heart failure. The anemia is typically microcytic and hypochromic (the red blood cells are abnormally small and pale). Atransferrinemia was first described in 1961 and is extremely rare, with only ten documented cases worldwide.
The specific problems produced differ according to the particular abnormal synthesis involved. Common manifestations include ataxia; seizures; retinopathy; liver fibrosis; coagulopathies; failure to thrive; dysmorphic features ("e.g.," inverted nipples and subcutaneous fat pads; and strabismus. If an MRI is obtained, cerebellar atrophy and hypoplasia is a common finding.
Ocular abnormalities of CDG-Ia include: myopia, infantile esotropia, delayed visual maturation, low vision, optic disc pallor, and reduced rod function on electroretinography.
Three subtypes of CDG I (a,b,d) can cause congenital hyperinsulinism with hyperinsulinemic hypoglycemia in infancy.
Symptoms may differ greatly, as apparently modifiers control to some degree the amount of FX that is produced. Some affected individuals have few or no symptoms while others may experience life-threatening bleeding. Typically this bleeding disorder manifests itself as a tendency to easy bruising, nose bleeding, heavy and prolonged menstruation and bleeding during pregnancy and childbirth, and excessive bleeding after dental or surgical interventions. Newborns may bleed in the head, from the umbilicus, or excessively after circumcision. Other bleeding can be encountered in muscles or joints, brain, gut, or urine
While in congenital disease symptoms may be present at birth or show up later, in patients with acquired FX deficiency symptoms typically show up in later life.
This disorder causes neurological problems, including mental retardation, brain atrophy and ventricular dilation, myoclonus, hypotonia, and epilepsy.
It is also associated with growth retardation, megaloblastic anemia, pectus excavatum, scoliosis, vomiting, diarrhea, and hepatosplenomegaly.
Mutations in several genes have been associated with the traditional clinical syndromes, termed muscular dystrophy-dystroglycanopathies (MDDG). A new nomenclature based on clinical severity and genetic cause was recently proposed by OMIM. The severity classifications are A (severe), B (intermediate), and C (mild). The subtypes are numbered one to six according to the genetic cause, in the following order: (1) POMT1, (2) POMT2, (3) POMGNT1, (4) FKTN, (5) FKRP, and (6) LARGE.
Most common severe types include:
Neonatal jaundice may develop in the presence of sepsis, hypoxia, hypoglycemia, hypothyroidism, hypertrophic pyloric stenosis, galactosemia, fructosemia, etc.
Hyperbilirubinemia of the unconjugated type may be caused by:
- increased production
- hemolysis (e.g., hemolytic disease of the newborn, hereditary spherocytosis, sickle cell disease)
- ineffective erythropoiesis
- massive tissue necrosis or large hematomas
- decreased clearance
- drug-induced
- physiological neonatal jaundice and prematurity
- liver diseases such as advanced hepatitis or cirrhosis
- breast milk jaundice and Lucey–Driscoll syndrome
- Crigler–Najjar syndrome and Gilbert syndrome
In Crigler–Najjar syndrome and Gilbert syndrome, routine liver function tests are normal, and hepatic histology usually is normal, too. No evidence for hemolysis is seen. Drug-induced cases typically regress after discontinuation of the substance. Physiological neonatal jaundice may peak at 85–170 µmol/l and decline to normal adult concentrations within two weeks. Prematurity results in higher levels.
Type II differs from type I in several aspects:
- Bilirubin levels are generally below 345 µmol/L [20 mg/dL] (range 100–430 µmol/L [6–24 mg/dL]; thus, overlap occurs), and some cases are only detected later in life.
- Because of lower serum bilirubin, kernicterus is rare in type II.
- Bile is pigmented, instead of pale in type I or dark as normal, and monoconjugates constitute the largest fraction of bile conjugates.
- UGT1A1 is present at reduced but detectable levels (typically <10% of normal), because of single base pair mutations.
- Therefore, treatment with phenobarbital is effective, generally with a decrease of at least 25% in serum bilirubin. In fact, this can be used, along with these other factors, to differentiate type I and II.
- The inheritance pattern of Crigler–Najjar syndrome type II has been difficult to determine, but is generally considered to be autosomal recessive.
The precise symptoms of a primary immunodeficiency depend on the type of defect. Generally, the symptoms and signs that lead to the diagnosis of an immunodeficiency include recurrent or persistent infections or developmental delay as a result of infection. Particular organ problems (e.g. diseases involving the skin, heart, facial development and skeletal system) may be present in certain conditions. Others predispose to autoimmune disease, where the immune system attacks the body's own tissues, or tumours (sometimes specific forms of cancer, such as lymphoma). The nature of the infections, as well as the additional features, may provide clues as to the exact nature of the immune defect.
Factor X deficiency (X as Roman numeral ten) is a bleeding disorder characterized by a lack in the production of factor X (FX), an enzyme protein that causes blood to clot in the coagulation cascade. Produced in the liver FX when activated cleaves prothrombin to generate thrombin in the intrinsic pathway of coagulation. This process is vitamin K dependent and enhanced by activated factor V.
The condition may be inherited or, more commonly, acquired.
These are a few specialized autoimmune disorders resulting from environmental rather than genetic causes, which mimic the genotypic disorders.
Congenital hypoplastic anemia (or constitutional aplastic anemia) is a type of aplastic anemia which is primarily due to a congenital disorder.
Associated genes include "TERC", "TERT", "IFNG", "NBS1", "PRF1", and "SBDS".
Examples include:
- Fanconi anemia
- Diamond-Blackfan anemia
Symptoms of sideroblastic anemia include skin paleness, fatigue, dizziness, and enlarged spleen and liver. Heart disease, liver damage, and kidney failure can result from iron buildup in these organs.