Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Congenital hydrocephalus is present in the infant prior to birth, meaning the fetus developed hydrocephalus in utero during fetal development. The most common cause of congenital hydrocephalus is aqueductal stenosis. Aqueductal stenosis occurs when the narrow passage between the third and fourth ventricles in the brain is blocked or too narrow to allow sufficient cerebral spinal fluid to drain. Fluid accumulates in the upper ventricles, causing hydrocephalus.
Other causes of congenital hydrocephalus include neural tube defects, arachnoid cysts, Dandy-Walker syndrome, and Arnold-Chiari malformation.
The cranial bones fuse by the end of the third year of life. For head enlargement to occur, hydrocephalus must occur before then. The causes are usually genetic but can also be acquired and usually occur within the first few months of life, which include 1) intraventricular matrix hemorrhages in premature infants, 2) infections, 3) type II Arnold-Chiari malformation, 4) aqueduct atresia and stenosis, and 5) Dandy-Walker malformation.
In newborns and toddlers with hydrocephalus, the head circumference is enlarged rapidly and soon surpasses the 97th percentile. Since the skull bones have not yet firmly joined together, bulging, firm anterior and posterior fontanelles may be present even when the patient is in an upright position.
The infant exhibits fretfulness, poor feeding, and frequent vomiting. As the hydrocephalus progresses, torpor sets in, and the infant shows lack of interest in their surroundings. Later on, the upper eyelids become retracted and the eyes are turned downwards ("sunset eyes") (due to hydrocephalic pressure on the mesencephalic tegmentum and paralysis of upward gaze). Movements become weak and the arms may become tremulous. Papilledema is absent but there may be a reduction of vision. The head becomes so enlarged that the child may eventually be bedridden.
About 80-90% of fetuses or newborn infants with spina bifida—often associated with meningocele or myelomeningocele—develop hydrocephalus.
The clinical presentation of hydrocephalus varies with chronicity. Acute dilatation of the ventricular system is more likely to manifest with the nonspecific signs and symptoms of increased intracranial pressure. By contrast chronic dilatation (especially in the elderly population) may have a more insidious onset presenting, for instance, with Hakim's triad (Adams triad).
Symptoms of increased intracranial pressure may include headaches, vomiting, nausea, papilledema, sleepiness or coma. Elevated intracranial pressure may result in uncal or tonsillar herniation, with resulting life-threatening brain stem compression.
Hakim's triad of gait instability, urinary incontinence and dementia is a relatively typical manifestation of the distinct entity normal pressure hydrocephalus (NPH). Focal neurological deficits may also occur, such as abducens nerve palsy and vertical gaze palsy (Parinaud syndrome due to compression of the quadrigeminal plate, where the neural centers coordinating the conjugated vertical eye movement are located). The symptoms depend on the cause of the blockage, the person's age, and how much brain tissue has been damaged by the swelling.
In infants with hydrocephalus, CSF builds up in the central nervous system, causing the fontanelle (soft spot) to bulge and the head to be larger than expected. Early symptoms may also include:
- Eyes that appear to gaze downward;
- Irritability;
- Seizures;
- Separated sutures;
- Sleepiness;
- Vomiting.
Symptoms that may occur in older children can include:
- Brief, shrill, high-pitched cry;
- Changes in personality, memory, or the ability to reason or think;
- Changes in facial appearance and eye spacing;
- Crossed eyes or uncontrolled eye movements;
- Difficulty feeding;
- Excessive sleepiness;
- Headache;
- Irritability, poor temper control;
- Loss of bladder control (urinary incontinence);
- Loss of coordination and trouble walking;
- Muscle spasticity (spasm);
- Slow growth (child 0–5 years);
- Slow or restricted movement;
- Vomiting.
Because hydrocephalus can injure the brain, thought and behavior may be adversely affected. Learning disabilities including short-term memory loss are common among those with hydrocephalus, who tend to score better on verbal IQ than on performance IQ, which is thought to reflect the distribution of nerve damage to the brain. However, the severity of hydrocephalus can differ considerably between individuals and some are of average or above-average intelligence. Someone with hydrocephalus may have coordination and visual problems, problems with coordination, or may be clumsy. They may reach puberty earlier than the average child (see precocious puberty). About one in four develops epilepsy.
Usually the cerebellum and brain stem are formed normally, although in some cases the cerebellum may also be absent. An infant with hydranencephaly may appear normal at birth or may have some distortion of the skull and upper facial features due to fluid pressure inside the skull. The infant's head size and spontaneous reflexes such as sucking, swallowing, crying, and moving the arms and legs may all seem normal, depending on the severity of the condition. However, after a few weeks the infant sometimes becomes irritable and has increased muscle tone (hypertonia). After several months of life, seizures and hydrocephalus may develop, if they did not exist at birth. Other symptoms may include visual impairment, lack of growth, deafness, blindness, spastic quadriparesis (paralysis), and intellectual deficits.
Some infants may have additional abnormalities at birth including seizures, myoclonus (involuntary sudden, rapid jerks), limited thermoregulation abilities, and respiratory problems.
Still other infants display no obvious symptoms at birth, going many months without a confirmed diagnosis of hydranencephaly. In some cases a severe hydrocephalus, or other cephalic condition, is misdiagnosed.
There are various symptoms of colpocephaly and patients can experience effects ranging from mild to severe. Some patients do not show most of the symptoms related to colpocephaly, such as psychomotor abnormalilities and agenesis of the corpus callosum. In some cases, signs appear later on in life and a significant number of children suffer only from minor disabilities.
The following list includes common symptoms of colpocephaly.
- partial or complete agenesis of the corpus callosum
- intellectual disability
- motor abnormalities
- visual defects such as, crossing of the eyes, missing visual fields, and optic nerve hypoplasia
- spasticity
- seizures
- cerebral palsy
Intracranial abnormalities include:
- Microcephaly
- Agenesis of the corpus callosum
- Meningomyelocele
- Lissencephaly
- Periventricular leukomalacia (PVL)
- Enlargement of the cisterna magna
- Cerebellar hypoplasia
The blockage of cerebrospinal fluid (CSF) flow may also cause a syrinx to form, eventually leading to syringomyelia. Central cord symptoms such as hand weakness, dissociated sensory loss, and, in severe cases, paralysis may occur.
Hydranencephaly or hydrancephaly is a condition in which the brain's cerebral hemispheres are absent to varying degrees and the remaining cranial cavity is filled with cerebrospinal fluid.
Hydranencephaly (or hydrancephaly) is a type of cephalic disorder.
These disorders are congenital conditions that derive from either damage to, or abnormal development of, the fetal nervous system in the earliest stages of development in utero. Cephalic is the medical term for “head” or “head end of body.” These conditions do not have any definitive identifiable cause factor; instead generally attributed to a variety of hereditary or genetic conditions, but also by environmental factors such as maternal infection, pharmaceutical intake, or even exposure to high levels of radiation.
This should not be confused with hydrocephalus, which is an accumulation of excess cerebrospinal fluid in the ventricles of the brain.
In hemihydranencephaly, only half of the cranial cavity is filled with fluid.
Syringomyelia is a chronic progressive degenerative disorder characterized by a fluid-filled cyst located in the spinal cord. Its symptoms include pain, weakness, numbness, and stiffness in the back, shoulders, arms or legs. Other symptoms include headaches, the inability to feel changes in the temperature, sweating, sexual dysfunction, and loss of bowel and bladder control. It is usually seen in the cervical region but can extend into the medulla oblongata and pons or it can reach downward into the thoracic or lumbar segments. Syringomyelia is often associated with Chiari malformation type I and is commonly seen between the C-4 and C-6 levels. The exact development of syringomyelia is unknown but many theories suggest that the herniated tonsils in Chiari malformation type I form a "plug" which does not allow an outlet of CSF from the brain to the spinal canal. Syringomyelia is present in 25% of patients with Chiari malformation.
Colpocephaly is characterized by disproportionately large occipital horns of the lateral ventricles (also frontal and temporal ventricles in some cases). MRI and CT scans of patients demonstrate abnormally thick gray matter with thin poorly myelinated white matter. This happens as a result of partial or complete absence of the corpus callosum. Corpus callosum is the band of white matter connecting the two cerebral hemispheres. The corpus callosum plays an extremely important role in interhemispheric communication, thus lack of or absence of these neural fibers results in a number of disabilities.
The lemon sign on CT scans of patients refers to the shape of the fetal skull when the frontal bones lose their normal convex contour and appear flattened or inwardly scalloped. This gives the skull a shape similar to that of a lemon. The sign is seen on transverse sonograms of the fetal cranium obtained at the level of the ventricles.
A special case is found in literature where lissencephaly, colpocephaly, and septal agenesis are all present together. The CT scans of the patient shows the ventricular system having a unique appearance of a crown of a king. This is referred to as the 'CROWN SIGN'.
The key features of this syndrome are an enlargement of the fourth ventricle; complete absence of the cerebellar vermis, the posterior midline area of cerebellar cortex responsible for coordination of the axial musculature; and cyst formation near the internal base of the skull. An increase in the size of the fluid spaces surrounding the brain as well as an increase in pressure may also be present. The syndrome can appear dramatically or develop unnoticed.
Symptoms, which often occur in early infancy, include slower motor development and progressive enlargement of the skull. In older children, symptoms of increased intracranial pressure such as irritability, vomiting, and convulsions and signs of cerebellar dysfunction such as unsteadiness and lack of muscle coordination or jerky movements of the eyes may occur. Other symptoms include increased head circumference, bulging at the back of the skull, problems with the nerves that control the eyes, face and neck, and abnormal breathing patterns.
Dandy–Walker syndrome is frequently associated with disorders of other areas of the central nervous system including absence of the corpus callosum, the bundle of axons connecting the two cerebral hemispheres, and malformations of the heart, face, limbs, fingers and toes.
The Dandy–Walker complex is a genetically sporadic disorder that occurs one in every 30,000 live births. Prenatal diagnosis and prognosis of outcomes associated with Dandy–Walker can be difficult. Prenatal diagnosis is possible with ultrasound. Because the syndrome is associated with an increased risk for fetal karyotype abnormalities, amniocentesis can be offered after prenatal diagnosis. There is a relative contraindication of taking Warfarin during pregnancy, as it is associated with an increased risk of Dandy–Walker syndrome if taken during the first trimester.
Dandy–Walker syndrome (DWS) is a rare group of congenital human brain malformations. There are three subtypes which affect multiple organs to varying degrees, but the fundamental abnormalities involve the cerebellum which controls muscle coordination. The adjacent fourth ventricle is often affected, which can alter the flow of cerebrospinal fluid, increase intracranial pressure, and lead to multiple other brain function problems. The degree of disability varies but is typically lifelong. Treatment may involve physical therapy, special education, or surgical placement of a cerebral shunt. It is named for Walter Dandy and Arthur Earl Walker. In the majority of individuals with Dandy–Walker malformation, signs and symptoms caused by abnormal brain development are present at birth or develop within the first year of life. Some children have a buildup of fluid in the brain (hydrocephalus) that may cause increased head size (macrocephaly). Up to half of affected individuals have intellectual disability that ranges from mild to severe, and those with normal intelligence may have learning disabilities. Children with Dandy–Walker malformation often have delayed development, particularly a delay in motor skills such as crawling, walking, and coordinating movements. People with Dandy–Walker malformation may experience muscle stiffness and partial paralysis of the lower limbs (spastic paraplegia), and they may also have seizures. While rare, hearing and vision problems can be features of this condition.
Schizencephaly can be distinguished from porencephaly by the fact that in schizencephaly the fluid-filled component, if present, is entirely lined by heterotopic grey matter while a porencephalic cyst is lined mostly by white matter. Individuals with clefts in both hemispheres, or bilateral clefts, are often developmentally delayed and have delayed speech and language skills and corticospinal dysfunction. Individuals with smaller, unilateral clefts (clefts in one hemisphere) may be weak or paralyzed on one side of the body and may have average or near-average intelligence. Patients with schizencephaly may also have varying degrees of microcephaly, Intellectual disability, hemiparesis (weakness or paralysis affecting one side of the body), or quadriparesis (weakness or paralysis affecting all four extremities), and may have reduced muscle tone (hypotonia). Most patients have seizures, and some may have hydrocephalus.
Many of the signs and symptoms of aqueductal stenosis are similar to those of hydrocephalus. These typical symptoms include: headache, nausea and vomiting, cognitive difficulty, sleepiness, seizures, balance and gait disturbances, visual abnormalities, and incontinence.
- Headache may be a result of the raised intracranial pressure from the disrupted flow of CSF, and sometimes this symptom may come on suddenly as a “thunderclap headache”.
- In children, cognitive difficulty and developmental delay have been seen in a range of severities. Mild developmental delay is characterized by motor and neurological development that is no greater than 2 standard deviations below average for the age of the child, and moderate delay is characterized by greater than 2 standard deviations below. A child with severe delay may be unable to use spoken language or control movement or interact with others, and can behave abusively towards themselves.
- A patient's level of consciousness may also deteriorate with time, and this can lead to coma or death.
- The visual abnormalities previously mentioned include “upward gaze palsy”, where a person has difficulty looking up.
- Tremors have also been reported as a symptom, but are not as common as these previously mentioned.
Signs of aqueductal stenosis other than those mentioned in “Causes of stenosis” include detection of an enlarged lateral and third ventricle in conjunction with a smaller fourth ventricle. This variation in ventricle size is indicative of a blockage in the aqueduct because it lies between the third and fourth ventricles. Another sign of stenosis is deformation of the midbrain, which can be severe. This is caused by the pressure gradient formed from a blockage in the aqueduct.
Schizencephaly () is a rare birth defect characterized by abnormal clefts lined with grey matter that form the ependyma of the cerebral ventricles to the pia mater. These clefts can occur bilaterally or unilaterally. Common clinical features of this malformation include epilepsy, motor deficits, and psychomotor retardation.
A limb anomaly is called a dysmelia. These include all forms of limbs anomalies, such as amelia, ectrodactyly, phocomelia, polymelia, polydactyly, syndactyly, polysyndactyly, oligodactyly, brachydactyly, achondroplasia, congenital aplasia or hypoplasia, amniotic band syndrome, and cleidocranial dysostosis.
Congenital anomalies of the heart include patent ductus arteriosus, atrial septal defect, ventricular septal defect, and tetralogy of fallot.
Congenital anomalies of the nervous system include neural tube defects such as spina bifida, meningocele, meningomyelocele, encephalocele and anencephaly. Other congenital anomalies of the nervous system include the Arnold-Chiari malformation, the Dandy-Walker malformation, hydrocephalus, microencephaly, megalencephaly, lissencephaly, polymicrogyria, holoprosencephaly, and agenesis of the corpus callosum.
Congenital anomalies of the gastrointestinal system include numerous forms of stenosis and atresia, and perforation, such as gastroschisis.
Congenital anomalies of the kidney and urinary tract (CAKUT) include renal parenchyma, kidneys, and urinary collecting system.
Defects can be bilateral or unilateral, and different defects often coexist in an individual child
Several terms are used to describe congenital abnormalities. (Some of these are also used to describe noncongenital conditions, and more than one term may apply in an individual condition.)
Aqueductal stenosis is a narrowing of the aqueduct of Sylvius which blocks the flow of cerebrospinal fluid (CSF) in the ventricular system. Blockage of the aqueduct can lead to hydrocephalus, specifically as a common cause of congenital and/or obstructive hydrocephalus.
The aqueduct of Sylvius is the channel which connects the third ventricle to the fourth ventricle and is the narrowest part of the CSF pathway with a mean cross-sectional area of 0.5 mm in children and 0.8 mm in adults. Because of its small size, the aqueduct is the most likely place for a blockage of CSF in the ventricular system. This blockage causes ventricle volume to increase because the CSF cannot flow out of the ventricles and cannot be effectively absorbed by the surrounding tissue of the ventricles. Increased volume of the ventricles will result in higher pressure within the ventricles, and cause higher pressure in the cortex from it being pushed into the skull. A person may have aqueductal stenosis for years without any symptoms, and a head trauma, hemorrhage, or infection could suddenly invoke those symptoms and worsen the blockage.
The classical triad of symptoms that defines 3C syndrome includes certain heart defects, hypoplasia (underdevelopment) of the cerebellum, and cranial dysmorphisms, which can take various forms. The heart defects and cranial dysmorphisms are heterogeneous in individuals who are all classed as having Ritscher-Schinzel syndrome.
Heart defects commonly seen with Ritscher-Schinzel syndrome are associated with the endocardial cushion and are the most important factor in determining a diagnosis. The mitral valve and tricuspid valve of the heart can be malformed, the atrioventricular canal can be complete instead of developing into the interatrial septum and interventricular septum, and conotruncal heart defects, which include tetralogy of Fallot, double outlet right ventricle, transposition of the great vessels, and hypoplastic left heart syndrome. Aortic stenosis and pulmonary stenosis have also been associated with 3C syndrome.
The cranial dysmorphisms associated with 3C syndrome are heterogeneous and include a degree of macrocephaly, a large anterior fontanel, a particularly prominent occiput and forehead, ocular hypertelorism (wide-set eyes), slanted palpebral fissures, cleft palate, a depressed nasal bridge, cleft palate with associated bifid uvula, low-set ears, micrognathia (an abnormally small jaw), brachycephaly (flattened head), and ocular coloboma. Low-set ears are the most common cranial dysmorphism seen in 3C syndrome, and ocular coloboma is the least common of the non-concurrent symptoms (cleft lip co-occurring with cleft palate is the least common).
Cranial dysplasias associated with 3C syndrome are also reflected in the brain. Besides the cerebellar hypoplasia, cysts are commonly found in the posterior cranial fossa, the ventricles and the cisterna magna are dilated/enlarged, and Dandy-Walker malformation is present. These are reflected in the developmental delays typical of the disease. 75% of children with 3C syndrome have Dandy-Walker malformation and hydrocephalus.
Signs and symptoms in other body systems are also associated with 3C syndrome. In the skeletal system, ribs may be absent, and hemivertebrae, syndactyly (fusion of fingers together), and clinodactyly (curvature of the fifth finger) may be present. In the GI and genitourinary systems, anal atresia, hypospadia (misplaced urethra), and hydronephrosis may exist. Adrenal hypoplasia and growth hormone deficiency are associated endocrine consequences of Ritscher-Schinzel syndrome. Some immunodeficiency has also been reported in connection with 3C syndrome.
Many children with the disorder die as infants due to severe congenital heart disease. The proband of Ritscher and Schinzel's original study was still alive at the age of 21.
A fetus with 3C syndrome may have an umbilical cord with one umbilical artery instead of two.
Usually associated with diaphragmatic hernia,
pulmonary hypoplasia,
imperforate anus,
micropenis,
bilateral cryptorchidism,
cerebral ventricular dilation,
camptodactyly,
agenesis of sacrum,
low-set ear.
- Fryns et al. (1979) reported 2 stillborn sisters with a multiple congenital anomaly syndrome characterized by coarse facies with cloudy corneae, diaphragmatic defects, absence of lung lobulation, and distal limb deformities. A sporadic case was reported by Goddeeris et al. (1980). Fitch (1988) claimed that she and her colleagues were the first to describe this disorder. In 1978 they reported a single infant, born of second-cousin parents, who had absent left hemidiaphragm, hydrocephalus, arhinencephaly, and cardiovascular anomalies.
- Lubinsky et al. (1983) reported a brother and sister with Fryns syndrome who both died in the neonatal period. Facial anomalies included broad nasal bridge, microretrognathia, abnormal helices, and cleft palate. Other features included distal digital hypoplasia, lung hypoplasia, and urogenital abnormalities, including shawl scrotum, uterus bicornis, and renal cysts. They were discordant for diaphragmatic hernia, cleft lip, and Dandy–Walker anomaly.
- Meinecke and Fryns (1985) reported an affected child; consanguinity of the parents supported recessive inheritance. They noted that a diaphragmatic defect had been described in 4 of the 5 reported cases and lung hypoplasia in all. Young et al. (1986) reported a sixth case. The male infant survived for 12 days. These authors listed corneal clouding, camptodactyly with hypoplastic nails, and abnormalities of the diaphragm as cardinal features.
- Samueloff et al. (1987) described a family in which all 4 children had Fryns syndrome and neonatal mortality. Features included hypoplastic lungs, cleft palate, retrognathia, micrognathism, small thorax, diaphragmatic hernia, distal limb hypoplasia, and early onset of polyhydramnios with premature delivery. Schwyzer et al. (1987) described an affected infant whose parents were second cousins.
- Moerman et al. (1988) described infant brother and sister with the syndrome of diaphragmatic hernia, abnormal face, and distal limb anomalies. Both died shortly after birth with severe respiratory distress. Ultrasonography demonstrated fetal hydrops, diaphragmatic hernia, and striking dilatation of the cerebral ventricles in both infants. Post-mortem examination showed Dandy–Walker malformation, ventricular septal defect, and renal cystic dysplasia.
- Cunniff et al. (1990) described affected brothers and 3 other cases, bringing the total reported cases of Fryns syndrome to 25. One of the affected brothers was still alive at the age of 24 months. Bilateral diaphragmatic hernias had been repaired on the first day of life. He required extracorporeal membrane oxygenation therapy for 5 days and oscillatory therapy for 3 months. Ventriculoperitoneal shunt was required because of slowly progressive hydrocephalus. Scoliosis was associated with extranumerary vertebral bodies and 13 ribs. Because of delayed gastric emptying, a gastrostomy tube was inserted. In addition, because of persistent chylothorax, he underwent decortication of the right lung and oversewing of the thoracic duct.
- Kershisnik et al. (1991) suggested that osteochondrodysplasia is a feature of Fryns syndrome.
- Willems et al. (1991) suggested that a diaphragmatic hernia is not a necessary feature of Fryns syndrome. They described a child with all the usual features except for diaphragmatic hernia; the diaphragm was reduced to a fibrous web with little muscular component. Bartsch et al. (1995) presented 2 unrelated cases with a typical picture of Fryns syndrome but without diaphragmatic hernia. One of these patients was alive at the age of 14 months, but was severely retarded. Bamforth et al. (1987) and Hanssen et al. (1992) also described patients with this syndrome who survived the neonatal period. In the report of Hanssen et al. (1992), 2 older sibs had died in utero. The reports suggested that survival beyond the neonatal period is possible when the diaphragmatic defect and lung hypoplasia are not present. However, mental retardation has been present in all surviving patients.
- Vargas et al. (2000) reported a pair of monozygotic twins with Fryns syndrome discordant for severity of diaphragmatic defect. Both twins had macrocephaly, coarse facial appearance, hypoplasia of distal phalanges, and an extra pair of ribs. Twin A lacked an apparent diaphragmatic defect, and at 1 year of age had mild developmental delay. Twin B had a left congenital diaphragmatic hernia and died neonatally. The authors suggested that absence of diaphragmatic defect in Fryns syndrome may represent a subpopulation of more mildly affected patients.
- Aymé, "et al." (1989) described 8 cases of Fryns syndrome in France. The most frequent anomalies were diaphragmatic defects, lung hypoplasia, cleft lip and palate, cardiac defects, including septal defects and aortic arch anomalies, renal cysts, urinary tract malformations, and distal limb hypoplasia. Most patients also had hypoplastic external genitalia and anomalies of internal genitalia, including bifid or hypoplastic uterus or immature testes. The digestive tract was also often abnormal; duodenal atresia, pyloric hyperplasia, malrotation and common mesentery were present in about half of the patients. When the brain was examined, more than half were found to have Dandy–Walker anomaly and/or agenesis of the corpus callosum. A few patients demonstrated cloudy cornea. Histologically, 2 of 3 patients showed retinal dysplasia with rosettes and gliosis of the retina, thickness of the posterior capsule of the lens, and irregularities of Bowman membrane.
- Alessandri et al. (2005) reported a newborn from the Comores Islands with clinical features of Fryns syndrome without diaphragmatic hernia. They noted that diaphragmatic hernia is found in more than 80% of cases and that at least 13 other cases had been reported with an intact diaphragm.
- In a postneonatal survivor of Fryns syndrome, Riela et al. (1995) described myoclonus appearing shortly after birth, which was well controlled on valproate. Progressive cerebral and brainstem atrophy was noted on serial MRIs made at 3 months and after 6 months of age.
- Van Hove et al. (1995) described a boy with Fryns syndrome who survived to age 3 years and reviewed the outcome of other reported survivors (approximately 14% of reported cases). Survivors tended to have less frequent diaphragmatic hernia, milder lung hypoplasia, absence of complex cardiac malformation, and severe neurologic impairment. Their patient had malformations of gyration and sulcation, particularly around the central sulcus, and hypoplastic optic tracts beyond the optic chiasm associated with profound mental retardation.
- Fryns and Moerman (1998) reported a second-trimester male fetus with Fryns syndrome and midline scalp defects. The authors stated that the finding of a scalp defect in Fryns syndrome confirms that it is a true malformation syndrome with major involvement of the midline structures.
- Ramsing et al. (2000) described 2 sibships with 4 fetuses and 1 preterm baby of 31 weeks' gestation affected by a multiple congenital disorder suggestive of Fryns syndrome. In addition to the diaphragmatic defects and distal limb anomalies, they presented with fetal hydrops, cystic hygroma, and multiple pterygias. Two affected fetuses in 1 family showed severe craniofacial abnormalities with bilateral cleft lip and palate and cardiovascular malformation.
- Arnold et al. (2003) reported a male fetus with Fryns syndrome and additional abnormalities, in particular, multiple midline developmental defects including gastroschisis, central nervous system defects with left arrhinencephaly and cerebellar hypoplasia, midline cleft of the upper lip, alveolar ridge, and maxillary bone, and cleft nose with bilateral choanal atresia.
- Pierson et al. (2004) reviewed 77 reported patients with Fryns syndrome and summarized the abnormal eye findings identified in 12 of them. They also described 3 new patients with Fryns syndrome, 1 of whom demonstrated unilateral microphthalmia and cloudy cornea.
- Slavotinek et al. (2005) noted that Fryns syndrome may be the most common autosomal recessive syndrome in which congenital diaphragmatic hernia (see DIH2, 222400) is a cardinal feature. The autosomal recessive inheritance in Fryns syndrome contrasts with the sporadic inheritance for most patients with DIH.
3C syndrome, also known as CCC dysplasia, Craniocerebellocardiac dysplasia or Ritscher–Schinzel syndrome, is a rare condition, whose symptoms include heart defects, cerebellar hypoplasia, and cranial dysmorphism. It was first described in the medical literature in 1987 by Ritscher and Schinzel, for whom the disorder is sometimes named.
Macrocephaly-capillary malformation (M-CM) is a multiple malformation syndrome causing abnormal body and head overgrowth and cutaneous, vascular, neurologic, and limb abnormalities. Though not every patient has all features, commonly found signs include macrocephaly, congenital macrosomia, extensive cutaneous capillary malformation (naevus flammeus or port-wine stain type birthmark over much of the body; a capillary malformation of the upper lip or philtrum is seen in many patients with this condition), body asymmetry (also called hemihyperplasia or hemihypertrophy), polydactyly or syndactyly of the hands and feet, lax joints, doughy skin, variable developmental delay and other neurologic problems such as seizures and low muscle tone.
Diagnosis is usually based on clinical observation. Various sets of criteria have been suggested to identify the disorder in an individual patient, all of which include macrocephaly and a number of the following: somatic overgrowth, cutis marmorata, midline facial birthmark, polydactyly/syndactyly, asymmetry (hemihyperplasia or hemihypertrophy), hypotonia at birth, developmental delay, connective tissue defect and frontal bossing. Currently no consensus exists about which diagnostic criteria are definitive and so evaluation by a medical geneticist or other clinician with familiarity with the syndrome is usually needed to provide diagnostic certainty. It is not clear if there are some features which are mandatory to make the diagnosis, but macrocephaly appears essentially universal though may not be congenital. The distinctive vascular abnormalities of the skin often fade over time, making the diagnosis challenging in older children with this condition.
The brain can be affected in several ways in this syndrome. Some children are born with structural brain anomalies such as cortical dysplasia or polymicrogyria. While developmental delay is nearly universal in this syndrome it is variable in severity, with the majority having mild to moderate delays and a minority having severe cognitive impairment. Some patients are affected with a seizure disorder. White matter abnormalities on magnetic resonance imaging (MRI), suggesting a delay in white matter myelination, is commonly seen in early childhood. Some patients may have asymmetry of the brain, with one side being noticeably larger than the other.
One interesting phenomenon that seems very common in this syndrome is the tendency for disproportionate brain growth in the first few years of life, with crossing of percentiles on the head circumference growth charts. A consequence of this disproportionate brain growth appears to be a significantly increased risk of cerebellar tonsillar herniation (descent of the cerebellar tonsils through the foramen magnum of the skull, resembling a Chiari I malformation neuroradiologically) and ventriculomegaly/hydrocephalus. Such cerebellar tonsil herniation may occur in up to 70% of children with M-CM.
The medical literature suggests that there is a risk of cardiac arrhythmias in early childhood. The cause for this is unknown. In addition, a variety of different congenital cardiac malformations have been reported in a small number of patients with this disorder.
Like other syndromes associated with disproportionate growth, there appears to be a slightly increased risk of certain types of childhood malignancies in M-CM (such as Wilms' tumor). However, the precise incidence of these malignancies is unclear.
Sinus pericranii typically present as soft palpable masses along midline skull, which may fluctuate in size depending on body positioning. Classically, these lesions are not associated with color change of the overlying skin, such as with other vascular lesions such as hemangioma.
NPH may exhibit a classic triad of clinical findings (known as the Adams triad or Hakim's triad) of urinary incontinence, gait disturbance, and dementia (commonly referred to as "wet, wacky and wobbly" or "weird walking water").
- Gait disturbance is typically the initial and most prominent symptom of the triad and may be progressive, due to expansion of the ventricular system, particularly at the level of the lateral ventricles, leading to traction on the corticospinal tract motor fibers descending to the lumbosacral spinal cord. The gait disturbance can be classified as mild (cautious gait or difficulty with tandem gait), marked (evident difficulty walking or considerable unstable gait) or severe (unaided gait not possible) In the early stages, most often this gait disturbance occurs in the form of unsteadiness and impaired balance, especially when encountering stairs and curbs. Weakness and tiredness of the legs may also be part of the complaint, although examination discloses no paresis or ataxia. Often a mobility aid is used for added stability, once the patient has reached the mild to marked stage. Such aids may include a quad cane or wheeled walker. The patient's gait at the marked stage will often show a decrease in step height and foot-floor clearance, as well as a decrease in walking speed. This style is often referred to as a magnetic gait, in which the feet appear to be stuck to the walking surface, and is considered the characteristic gait disturbance of NPH. The gait may begin to mimic a Parkinsonian gait, with short shuffling steps and stooped, forward-leaning posture, but there is no rigidity or tremor. An increased tendency to fall backwards is also seen, and a broad-based gait may be employed by the patient in order to increase their base of support and thereby their stability. In the very late stages, the patient can progress from an inability to walk, to an inability to stand, sit, rise from a chair or turn over in bed; this advanced stage is referred to as "hydrocephalic astasia-abasia".
- Dementia is predominantly frontal lobe in nature and of the subcortical type of dementia. It presents in the form of abulia, forgetfulness, inertia, inattention, decreased speed of complex information procession (also described as a dullness in thinking and actions), and disturbed manipulation of acquired knowledge, which is reflective of the loss of integrity of the frontal lobes. Memory problems are usually a component of the overall problem and have been predominant in some cases, which can lead to the misdiagnosis of Alzheimer's disease. However, in NPH there may be an obvious discrepancy between (often severely) impaired recall and intact or much less impaired recognition. The dementia is thought to result from traction on frontal and limbic fibers that also run in the periventricular region.
- Urinary incontinence appears late in the illness, and is found to be of the spastic hyperreflexic, increased-urgency type associated with decreased inhibition of bladder contractions and detrusor instability. In the most severe cases, bladder hyperreflexia is associated with a lack of concern for micturition due to the severe frontal lobe cognitive impairment. This is also known as "frontal lobe incontinence", where the patient becomes indifferent to their recurrent urinary symptoms.
Carpenter syndrome presents several features:
- Tower-shaped skull (craniosynostosis)
- Additional or fused digits (fingers and toes)
- Obesity
- Reduced height
Intellectual disability is also common with the disorder, although some patients may have average intellectual capacity.
Cerebellar stroke syndrome is a condition in which the circulation to the cerebellum is impaired due to a lesion of the superior cerebellar artery, anterior inferior cerebellar artery or the posterior inferior cerebellar artery.
Cardinal signs include vertigo, headache, vomiting, and ataxia.
Cerebellar strokes account for only 2-3% of the 600 000 strokes that occur each year in the United States. They are far less common than strokes which occur in the cerebral hemispheres. In recent years mortality rates have decreased due to advancements in health care which include earlier diagnosis through MRI and CT scanning. Advancements have also been made which allow earlier management for common complications of cerebellar stroke such as brainstem compression and hydrocephalus.
Research is still needed in the area of cerebellar stroke management; however, it has been proposed that several factors may lead to poor outcomes in individuals who suffer from cerebellar stroke. These factors include:
1. Declining levels of consciousness
2. New signs of brainstem involvement
3. Progressing Hydrocephalus
4. Stroke to the midline of the cerebellum (a.k.a. the vermis)