Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Very frequent signs
- Abnormal gastrointestinal tract
- Absent pectoral muscles
- Brachydactyly (Short fingers)
- Dextrocardia
- Diaphragmatic hernia/defect
- Humerus absent/abnormal
- Liver/biliary tract anomalies
- Maternal diabetes
- Oligodactyly/missing fingers
- Radius absent/abnormal
- Rhizomelic micromelia (relatively shorter proximal segment of the limbs compared to the middle and the distal segments)
- Sparsity or abnormality of axillary hair on affected side
- Syndactyly of fingers (webbing)
- Ulna absent/abnormal
- Upper limb asymmetry
- Abnormal rib
- Simian crease on affected side
Frequent signs
- Hypoplastic/absent nipples
- Scapula anomaly
Occasional signs
- Agenesis/hypoplasia of kidneys
- Encephalocele/exencephaly
- Abnormal morphology of hypothalamic-hypophyseal axis
- Abnormal function of hypothalamic-hypophyseal axis
- Microcephaly
- Preaxial polydactyly
- Ureteric anomalies (reflux/duplex system)
- Vertebral segmentation anomaly
In general there are five types of thumb hypoplasia, originally described by Muller in 1937 and improved by Blauth, Buck-Gramcko and Manske.
- Type I: the thumb is small, normal components are present but undersized. Two muscles of the thumb, the abductor pollicis brevis and opponens pollicis, are not fully developed
. This type requires no surgical treatment in most cases.
- Type II is characterized by a tight web space between the thumb and index finger which restricts movement, poor thenar muscles and an unstable middle joint of the thumb metacarpophalangeal joint. This unstable thumb is best treated with reconstruction of the mentioned structures.
- Type III thumbs are subclassified into two subtypes by Manske. Both involve a less developed first metacarpal and a nearly absent thenar musculature. Type III-A has a fairly stable carpometacarpal joint and type III-B does not. The function of the thumb is poor. Children with type III are the most difficult patients to treat because there is not one specific treatment for the hypoplastic thumb. The limit between pollicization and reconstruction varies. Some surgeons have said that type IIIA is amenable to reconstruction and not type IIIB. Others say type IIIA is not suitable for reconstruction too. Based on the diagnosis the doctor has to decide what is needed to be done to obtain a more functional thumb, i.e. reconstruction or pollicization. In this group careful attention should be paid to anomalous tendons coming from the forearm (extrinsic muscles, like an aberrant long thumb flexor – flexor pollicis longus).
- Type IV is called a pouce flottant, floating thumb. This thumb has a neurovascular bundle which connects it to the skin of the hand. There’s no evidence of thenar muscles and rarely functioning tendons. It has a few rudimentary bones. Children with type IV are difficult to reconstruct. This type is nearly always treated with an index finger pollicization to improve hand function.
- Type V is no thumb at all and requires pollicization.
The triphalangeal thumb has a different appearance than normal thumbs. The appearance can differ widely; the thumb can be a longer thumb, it can be deviated in the radio-ulnar plane (clinodactyly), thumb strength can be diminished. In the case of a five fingered-hand it has a finger-like appearance, with the position in the plane of the four fingers, thenar muscle deficiency, and additional length. There is often a combination with radial polydactyly.
Thumb hypoplasia is a spectrum of congenital abnormalities of the thumb varying from small defects to absolute retardation of the thumb. It can be isolated, when only the thumb is affected, and in 60% of the cases it is associated with radial dysplasia (or radial club, radius dysplasia, longitudinal radial deficiency). Radial dysplasia is the condition in which the forearm bone and the soft tissues on the thumb side are underdeveloped or absent.
In an embryo the upper extremities develop from week four of the gestation. During the fifth to eighth week the thumb will further develop. In this period something goes wrong with the growth of the thumb but the exact cause of thumb hypoplasia is unknown.
One out of every 100,000 live births shows thumb hypoplasia. In more than 50% of the cases both hands are affected, otherwise mainly the right hand is affected.
About 86% of the children with hypoplastic thumb have associated abnormalities. Embryological hand development occurs simultaneously with growth and development of the cardiovascular, neurologic and hematopoietic systems. Thumb hypoplasia has been described in 30 syndromes wherein those abnormalities have been seen. A syndrome is a combination of three or more abnormalities. Examples of syndromes with an hypoplastic thumb are Holt-Oram syndrome, VACTERL association and thrombocytopenia absent radius (TAR syndrome).
Poland syndrome, named after British surgeon Alfred Poland, is a rare birth defect characterized by underdevelopment or absence of the chest muscle (pectoralis) on one side of the body, and usually also webbing of the fingers (cutaneous syndactyly) of the hand on the same side (the ipsilateral hand). In most affected individuals, the missing part is the large section of the muscle that normally attaches to the upper arm on one side and the breastbone (sternum) on the other. Other abnormalities may occur on the affected side of the torso. In some cases, additional muscles in the chest wall, side, and shoulder are missing or underdeveloped.
There may also be rib cage abnormalities, such as shortened ribs, and the ribs may be noticeable due to less fat under the skin (subcutaneous fat). Breast and nipple abnormalities may also occur, and underarm (axillary) hair is sometimes sparse or abnormally placed. In most cases, the abnormalities in the chest area do not cause health problems or affect movement. Poland syndrome most often affects the right side of the body, and occurs more often in males than in females.
It is usually considered a unilateral condition. Some have claimed that the term can be applied in bilateral presentation, but others recommend using alternate terminology in those cases.
Characteristics are:
- A fibrous band instead of the fibula
- Short deformed leg
- Absence of the lateral part of the ankle joint (due to absence of the distal end of the fibula), and what is left is unstable; the foot has an equinovalgus deformity
- Possible absence of part of the foot requiring surgical intervention to bring the foot into normal function, or amputation.
- Possible absence of one or two toes on the foot
- Possible conjoined toes or metatarsals
Partial or total absence of fibula is among the most frequent limb anomalies. It is the most common long bone deficiency and is the most common skeletal deformity in the leg. It most often is unilateral (present only on one side). It may also present as bilateral (affecting both legs). Paraxial fibular hemimelia is the most common manifestation in which only the postaxial portion of the limb is affected. It is commonly seen as a complete terminal deficiency, where the lateral rays of the foot are also affected. Hemimelia can also be intercalary in which case the foot remains unaffected. Although the missing bone is easily identified, this condition is not simply a missing bone. Males are affected twice as often as females in most series.
Generally, triphalangeal thumbs are non-opposable. In contrast to most people with opposable thumbs, a person suffering from TPT cannot easily place his or her thumb opposite the other four digits of the same hand. The opposable thumb's ability to effortlessly utilize fingers in a "pinch" formation is critical in precision gripping. For the thumb to adequately grip, certain thumb criteria must be met (e.g. suitable position and length, stable joints and good thenar muscle strength). Because triphalangeal thumbs cannot easily oppose and do not possess many of the optimal qualities found in most opposable thumbs, they tend to cause the hand to be less effective in use and, therefore, prove to be more problematic in daily life.
This condition exists in a variety of forms, ranging from partial absence of the tail bone regions of the spine to absence of the lower vertebrae, pelvis and parts of the thoracic and/or lumbar areas of the spine. In some cases where only a small part of the spine is absent, there may be no outward sign of the condition. In cases where more substantial areas of the spine are absent, there may be fused, webbed, or smaller lower extremities and paralysis. Bowel and bladder control is usually affected.
Ectrodactyly, split hand, cleft hand, derived from the Greek "ektroma" (abortion) and "daktylos" (finger) involves the deficiency or absence of one or more central digits of the hand or foot and is also known as split hand/split foot malformation (SHFM). The hands and feet of people with ectrodactyly are often described as "claw-like" and may include only the thumb and one finger (usually either the little finger, ring finger, or a syndactyly of the two) with similar abnormalities of the feet.
It is a rare form of a congenital disorder in which the development of the hand is disturbed. It is a type I failure of formation – longitudinal arrest. The central ray of the hand is affected and usually appears without proximal deficiencies of nerves, vessels, tendons, muscles and bones in contrast to the radial and ulnar deficiencies. The cleft hand appears as a V-shaped cleft situated in the centre of the hand. The digits at the borders of the cleft might be syndactilyzed, and one or more digits can be absent. In most types, the thumb, ring finger and little finger are the less affected parts of the hand. The incidence of cleft hand varies from 1 in 90,000 to 1 in 10,000 births depending on the used classification. Cleft hand can appear unilateral or bilateral, and can appear isolated or associated with a syndrome.
Split hand/foot malformation (SHFM) is characterized by underdeveloped or absent central digital rays, clefts of hands and feet, and variable syndactyly of the remaining digits. SHFM is a heterogeneous condition caused by abnormalities at one of multiple loci, including SHFM1 (SHFM1 at 7q21-q22), SHFM2 (Xq26), SHFM3 (FBXW4/DACTYLIN at 10q24), SHFM4 (TP63 at 3q27), and SHFM5 (DLX1 and DLX 2 at 2q31). SHFM3 is unique in that it is caused by submicroscopic tandem chromosome duplications of FBXW4/DACTYLIN. SHFM3 is considered 'isolated' ectrodactyly and does not show a mutation of the tp63 gene.
Fibular hemimelia or longitudinal fibular deficiency is "the congenital absence of the fibula and it is the most common congenital absence of long bone of the extremities." It is the shortening of the fibula at birth, or the complete lack thereof. In humans, the disorder can be noted by ultrasound in utero to prepare for amputation after birth or complex bone lengthening surgery. The amputation usually takes place at six months with removal of portions of the legs to prepare them for prosthetic use. The other treatments which include repeated corrective osteotomies and leg-lengthening surgery (Ilizarov apparatus) are costly and associated with residual deformity.
Usually associated with diaphragmatic hernia,
pulmonary hypoplasia,
imperforate anus,
micropenis,
bilateral cryptorchidism,
cerebral ventricular dilation,
camptodactyly,
agenesis of sacrum,
low-set ear.
- Fryns et al. (1979) reported 2 stillborn sisters with a multiple congenital anomaly syndrome characterized by coarse facies with cloudy corneae, diaphragmatic defects, absence of lung lobulation, and distal limb deformities. A sporadic case was reported by Goddeeris et al. (1980). Fitch (1988) claimed that she and her colleagues were the first to describe this disorder. In 1978 they reported a single infant, born of second-cousin parents, who had absent left hemidiaphragm, hydrocephalus, arhinencephaly, and cardiovascular anomalies.
- Lubinsky et al. (1983) reported a brother and sister with Fryns syndrome who both died in the neonatal period. Facial anomalies included broad nasal bridge, microretrognathia, abnormal helices, and cleft palate. Other features included distal digital hypoplasia, lung hypoplasia, and urogenital abnormalities, including shawl scrotum, uterus bicornis, and renal cysts. They were discordant for diaphragmatic hernia, cleft lip, and Dandy–Walker anomaly.
- Meinecke and Fryns (1985) reported an affected child; consanguinity of the parents supported recessive inheritance. They noted that a diaphragmatic defect had been described in 4 of the 5 reported cases and lung hypoplasia in all. Young et al. (1986) reported a sixth case. The male infant survived for 12 days. These authors listed corneal clouding, camptodactyly with hypoplastic nails, and abnormalities of the diaphragm as cardinal features.
- Samueloff et al. (1987) described a family in which all 4 children had Fryns syndrome and neonatal mortality. Features included hypoplastic lungs, cleft palate, retrognathia, micrognathism, small thorax, diaphragmatic hernia, distal limb hypoplasia, and early onset of polyhydramnios with premature delivery. Schwyzer et al. (1987) described an affected infant whose parents were second cousins.
- Moerman et al. (1988) described infant brother and sister with the syndrome of diaphragmatic hernia, abnormal face, and distal limb anomalies. Both died shortly after birth with severe respiratory distress. Ultrasonography demonstrated fetal hydrops, diaphragmatic hernia, and striking dilatation of the cerebral ventricles in both infants. Post-mortem examination showed Dandy–Walker malformation, ventricular septal defect, and renal cystic dysplasia.
- Cunniff et al. (1990) described affected brothers and 3 other cases, bringing the total reported cases of Fryns syndrome to 25. One of the affected brothers was still alive at the age of 24 months. Bilateral diaphragmatic hernias had been repaired on the first day of life. He required extracorporeal membrane oxygenation therapy for 5 days and oscillatory therapy for 3 months. Ventriculoperitoneal shunt was required because of slowly progressive hydrocephalus. Scoliosis was associated with extranumerary vertebral bodies and 13 ribs. Because of delayed gastric emptying, a gastrostomy tube was inserted. In addition, because of persistent chylothorax, he underwent decortication of the right lung and oversewing of the thoracic duct.
- Kershisnik et al. (1991) suggested that osteochondrodysplasia is a feature of Fryns syndrome.
- Willems et al. (1991) suggested that a diaphragmatic hernia is not a necessary feature of Fryns syndrome. They described a child with all the usual features except for diaphragmatic hernia; the diaphragm was reduced to a fibrous web with little muscular component. Bartsch et al. (1995) presented 2 unrelated cases with a typical picture of Fryns syndrome but without diaphragmatic hernia. One of these patients was alive at the age of 14 months, but was severely retarded. Bamforth et al. (1987) and Hanssen et al. (1992) also described patients with this syndrome who survived the neonatal period. In the report of Hanssen et al. (1992), 2 older sibs had died in utero. The reports suggested that survival beyond the neonatal period is possible when the diaphragmatic defect and lung hypoplasia are not present. However, mental retardation has been present in all surviving patients.
- Vargas et al. (2000) reported a pair of monozygotic twins with Fryns syndrome discordant for severity of diaphragmatic defect. Both twins had macrocephaly, coarse facial appearance, hypoplasia of distal phalanges, and an extra pair of ribs. Twin A lacked an apparent diaphragmatic defect, and at 1 year of age had mild developmental delay. Twin B had a left congenital diaphragmatic hernia and died neonatally. The authors suggested that absence of diaphragmatic defect in Fryns syndrome may represent a subpopulation of more mildly affected patients.
- Aymé, "et al." (1989) described 8 cases of Fryns syndrome in France. The most frequent anomalies were diaphragmatic defects, lung hypoplasia, cleft lip and palate, cardiac defects, including septal defects and aortic arch anomalies, renal cysts, urinary tract malformations, and distal limb hypoplasia. Most patients also had hypoplastic external genitalia and anomalies of internal genitalia, including bifid or hypoplastic uterus or immature testes. The digestive tract was also often abnormal; duodenal atresia, pyloric hyperplasia, malrotation and common mesentery were present in about half of the patients. When the brain was examined, more than half were found to have Dandy–Walker anomaly and/or agenesis of the corpus callosum. A few patients demonstrated cloudy cornea. Histologically, 2 of 3 patients showed retinal dysplasia with rosettes and gliosis of the retina, thickness of the posterior capsule of the lens, and irregularities of Bowman membrane.
- Alessandri et al. (2005) reported a newborn from the Comores Islands with clinical features of Fryns syndrome without diaphragmatic hernia. They noted that diaphragmatic hernia is found in more than 80% of cases and that at least 13 other cases had been reported with an intact diaphragm.
- In a postneonatal survivor of Fryns syndrome, Riela et al. (1995) described myoclonus appearing shortly after birth, which was well controlled on valproate. Progressive cerebral and brainstem atrophy was noted on serial MRIs made at 3 months and after 6 months of age.
- Van Hove et al. (1995) described a boy with Fryns syndrome who survived to age 3 years and reviewed the outcome of other reported survivors (approximately 14% of reported cases). Survivors tended to have less frequent diaphragmatic hernia, milder lung hypoplasia, absence of complex cardiac malformation, and severe neurologic impairment. Their patient had malformations of gyration and sulcation, particularly around the central sulcus, and hypoplastic optic tracts beyond the optic chiasm associated with profound mental retardation.
- Fryns and Moerman (1998) reported a second-trimester male fetus with Fryns syndrome and midline scalp defects. The authors stated that the finding of a scalp defect in Fryns syndrome confirms that it is a true malformation syndrome with major involvement of the midline structures.
- Ramsing et al. (2000) described 2 sibships with 4 fetuses and 1 preterm baby of 31 weeks' gestation affected by a multiple congenital disorder suggestive of Fryns syndrome. In addition to the diaphragmatic defects and distal limb anomalies, they presented with fetal hydrops, cystic hygroma, and multiple pterygias. Two affected fetuses in 1 family showed severe craniofacial abnormalities with bilateral cleft lip and palate and cardiovascular malformation.
- Arnold et al. (2003) reported a male fetus with Fryns syndrome and additional abnormalities, in particular, multiple midline developmental defects including gastroschisis, central nervous system defects with left arrhinencephaly and cerebellar hypoplasia, midline cleft of the upper lip, alveolar ridge, and maxillary bone, and cleft nose with bilateral choanal atresia.
- Pierson et al. (2004) reviewed 77 reported patients with Fryns syndrome and summarized the abnormal eye findings identified in 12 of them. They also described 3 new patients with Fryns syndrome, 1 of whom demonstrated unilateral microphthalmia and cloudy cornea.
- Slavotinek et al. (2005) noted that Fryns syndrome may be the most common autosomal recessive syndrome in which congenital diaphragmatic hernia (see DIH2, 222400) is a cardinal feature. The autosomal recessive inheritance in Fryns syndrome contrasts with the sporadic inheritance for most patients with DIH.
Antley–Bixler syndrome presents itself at birth or prenatally. Features of the disorder include brachycephaly (flat forehead), craniosynostosis (complete skull-joint closure) of both coronal and lambdoid sutures, facial hypoplasia (underdevelopment); bowed ulna (forearm bone) and femur (thigh bone), synostosis of the radius (forearm bone), humerus (upper arm bone), and trapezoid (hand bone); camptodactyly (fused interphalangeal joints in the fingers), thin ilial wings (outer pelvic plate), and renal malformations.
Other symptoms, such as cardiac malformations, proptotic exophthalmos (bulging eyes), arachnodactyly (spider-like fingers), as well as nasal, anal, and vaginal atresia (occlusion) have been reported.
Caudal regression syndrome or sacral agenesis (or hypoplasia of the sacrum) is a congenital disorder in which there is abnormal fetal development of the lower spine—the caudal partition of the spine.
It occurs at a rate of approximately one per 25,000 live births.
There are several classifications for cleft hand, but the most used classification is described by Manske and Halikis see table 3. This classification is based on the first web space. The first web space is the space between the thumb and the index.
Table 3: Classification for cleft hand described by Manske and Halikis
The most common and defining features of BGS are craniosynostosis and radial ray deficiency. The observations of these features allow for a diagnosis of BGS to be made, as these symptoms characterize the syndrome. Craniosynostosis involves the pre-mature fusion of bones in the skull. The coronal craniosynostosis that is commonly seen in patients with BGS results in the fusion of the skull along the coronal suture. Because of the changes in how the bones of the skull are connected together, people with BGS will have an abnormally shaped head, known as brachycephaly. Features commonly seen in those with coronal craniosynostosis are bulging eyes, shallow eye pockets, and a prominent forehead. Radial ray deficiency is another clinical characteristic of those with BGS, and results in the under-development (hypoplasia) or the absence (aplasia) of the bones in the arms and the hands. These bones include the radius, the carpal bones associated with the radius and the thumb. Oligodactyly can also result from radial ray deficiency, meaning that someone with BGS may have fewer than five fingers. Radial ray deficiency that is associated with syndromes (such as BGS) occurs bi-laterally, affecting both arms.
Some of the other clinical characteristics sometimes associated with this disorder are growth retardation and poikiloderma. Although the presentation of BGS may differ between individuals, these characteristics are often observed. People with BGS may have stunted growth, short stature and misshapen kneecaps. Poikiloderma may also be present in people with this syndrome, meaning that their skin may have regions of hyperpigmentation and hypopigmentation, or regions where the skin is missing (atrophy).
ONH may be found in isolation or in conjunction with myriad functional and anatomic abnormalities of the central nervous system. Nearly 80% of those affected with ONH will experience hypothalamic dysfunction and/or impaired development of the brain, regardless of MRI findings or severity of ONH.
ONH can be unilateral (in one eye) or bilateral (in both eyes), although it presents most often bilaterally (80%). Because the unilateral cases tend to have better vision, they are typically diagnosed at a later age than those with bilateral ONH. Visual acuity can range from no light perception to near-normal vision.
Children diagnosed with ONH generally present with vision problems which include nystagmus (involuntary movement of the eyes), which tends to develop at 1 to 3 months and/or strabismus (inability to align both eyes simultaneously), manifested during the first year of life.
The majority of children affected experience improvement in vision during the first few years of life, though the reason for this occurrence is unknown. There have been no reported cases of decline in vision due to ONH.
Fryns syndrome is an autosomal recessive multiple congenital anomaly syndrome that is usually lethal in the neonatal period. Fryns (1987) reviewed the syndrome.
Synostosis (plural: synostoses) is fusion of two bones. It can be normal in puberty, fusion of the epiphysis, or abnormal. When synostosis is abnormal it is a type of dysostosis.
Examples of synostoses include:
- craniosynostosis – an abnormal fusion of two or more cranial bones;
- radioulnar synostosis – the abnormal fusion of the radius and ulna bones of the forearm;
- tarsal coalition – a failure to separately form all seven bones of the tarsus (the hind part of the foot) resulting in an amalgamation of two bones; and
- syndactyly – the abnormal fusion of neighboring digits.
Synostosis within joints can cause ankylosis.
Sometimes babies born with choanal atresia also have other abnormalities:
- coloboma
- heart defects
- mental retardation
- growth impairment
- others (see also CHARGE syndrome)
Also any condition that causes significant depression of the nasal bridge or midface retraction can be associated with choanal atresia. Examples include the craniosynostosis syndromes such as Crouzon syndrome, Pfeiffer syndrome, Treacher Collins and Antley-Bixler syndrome.
Antley–Bixler syndrome, also called trapezoidocephaly-synostosis syndrome, is a rare, very severe autosomal recessive congenital disorder characterized by malformations and deformities affecting the majority of the skeleton and other areas of the body.
Radioulnar synostosis is one of the more common failures of separation of parts of the upper limb. There are two general types: one is characterized by fusion of the radius and ulna at their proximal borders and the other is fused distal to the proximal radial epiphysis. Most cases are sporadic, congenital (due to a defect in longitudinal segmentation at the 7th week of development) and less often post-traumatic, bilateral in 60%, and more common in males. Familial cases in association with autosomal dominant transmission appear to be concentrated in certain geographic regions, such as Sicily.
The condition frequently is not noted until late childhood, as function may be normal, especially in unilateral cases. Increased wrist motion may compensate for the absent forearm motion. It has been suggested that individuals whose forearms are fixed in greater amounts of pronation (over 60 degrees) face more problems with function than those with around 20 degrees of fixation. Pain is generally not a problem, unless radial head dislocation should occur.
Most examples of radioulnar synostosis are isolated (non-syndromic). Syndromes that may be accompanied by radioulnar synostosis include X chromosome polyploidy (e.g., XXXY) and other chromosome disorders (e.g., 4p- syndrome, Williams syndrome), acrofacial dysostosis, Antley–Bixler syndrome, genitopatellar syndrome, Greig cephalopolysyndactyly syndrome, hereditary multiple osteochondromas (hereditary multiple exostoses), limb-body wall complex, and Nievergelt syndrome.
Craniosynostosis (from cranio, cranium; + syn, together; + ostosis relating to bone) is a condition in which one or more of the fibrous sutures in an infant skull prematurely fuses by turning into bone (ossification). Craniosynostosis has following kinds: scaphocephaly, trigonocephaly, plagiocephaly, anterior plagiocephaly, posterior plagiocephaly, brachycephaly, oxycephaly, pansynostosis.
It can be unilateral or bilateral.
- Sometimes, a unilateral choanal atresia is not detected until much later in life because the baby manages to get along with only one nostril available for breathing.
- Bilateral choanal atresia is a very serious life-threatening condition because the baby will then be unable to breathe directly after birth as babies are obligate nasal breathers (they mainly use their noses to breathe). In some cases, this may present as cyanosis while the baby is feeding, because the oral air passages are blocked by the tongue, further restricting the airway. The cyanosis may improve when the baby cries, as the oral airway is used at this time. These babies may require airway resuscitation soon after birth.
Classification of radial dysplasia is practised through different models. Some only include the different deformities or absences of the radius, where others also include anomalies of the thumb and carpal bones. The Bayne and Klug classification discriminates four different types of radial dysplasia. A fifth type was added by Goldfarb et al. describing a radial dysplasia with participation of the humerus. In this classification only anomalies of the radius and the humerus are taken in consideration. James and colleagues expanded this classification by including deficiencies of the carpal bones with a normal distal radius length as type 0 and isolated thumb anomalies as type N.
Type N: Isolated thumb anomaly
Type 0: Deficiency of the carpal bones
Type I: Short distal radius
Type II: Hypoplastic radius in miniature
Type III: Absent distal radius
Type IV: Complete absent radius
Type V: Complete absent radius and manifestations in the proximal humerus
The term absent radius can refer to the last 3 types.
There are four grades of microtia:
- Grade I: A less than complete development of the external ear with identifiable structures and a small but present external ear canal
- Grade II: A partially developed ear (usually the top portion is underdeveloped) with a closed [stenotic] external ear canal producing a conductive hearing loss.
- Grade III: Absence of the external ear with a small peanut-like vestige structure and an absence of the external ear canal and ear drum. Grade III microtia is the most common form of microtia.
- Grade IV: Absence of the total ear or anotia.