Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A gunshot wound (GSW) is a form of physical trauma sustained from the discharge of arms or munitions. The most common forms of ballistic trauma stem from firearms used in armed conflicts, civilian sporting, recreational pursuits and criminal activity. Ballistic trauma can be fatal or cause long-term consequences.
Head injuries in sports of any level (junior, amateur, professional) are the most dangerous and sickening kind of injuries that can occur in sport, and are becoming more common in Australian sport. Concussions are the most common side effect of a head injury and are defined as "temporary unconsciousness or confusion and other symptoms caused by a blow to the head." A concussion also falls under the category of Traumatic Brain Injury (TBI). Especially in contact sports like Australian rules football and Rugby issues with concussions are prevalent, and methods to deal with, prevent and treat concussions are continuously being updated and researched to deal with the issue. Concussions pose a serious threat to the patients’ mental and physical health, as well as their playing career, and can result in lasting brain damage especially if left untreated. The signs that a player may have a concussion are: loss of consciousness or non-responsiveness, balance problems (unsteadiness on feet, poor co-ordination), a dazed, blank or vacant look and/or confusion and unawareness of their surroundings. Of course the signs are relevant only after the player experiences a blow to the head.
Cognitive symptoms include confusion, disorientation, and difficulty focusing attention. Loss of consciousness may occur, but is not necessarily correlated with the severity of the concussion if it is brief. Post-traumatic amnesia, in which events following the injury cannot be recalled, is a hallmark of concussion. Confusion, another concussion hallmark, may be present immediately or may develop over several minutes. A person may repeat the same questions, be slow to respond to questions or directions, have a vacant stare, or have slurred or incoherent speech. Other MTBI symptoms include changes in sleeping patterns and difficulty with reasoning, concentrating, and performing everyday activities.
Concussion can result in changes in mood including crankiness, loss of interest in favorite activities or items, tearfulness, and displays of emotion that are inappropriate to the situation. Common symptoms in concussed children include restlessness, lethargy, and irritability.
Concussion is associated with a variety of symptoms, which typically occur rapidly after the injury. Early symptoms usually subside within days or weeks. The number and type of symptoms any one individual suffers varies widely.
Severe head injuries can lead to permanent vegetative states or death, therefore being able to recognize symptoms and get medical attention is very important. Symptoms of a severe closed-head injury include:
- coma
- seizures
- loss of consciousness
Concussions and other types of repetitive play-related head blows in American football have been shown to be the cause of chronic traumatic encephalopathy (CTE), which has led to player suicides and other debilitating symptoms after retirement, including memory loss, depression, anxiety, headaches, and also sleep disturbances.
The list of ex-NFL players that have either been diagnosed "post-mortem" with CTE or have reported symptoms of CTE continues to grow.
Because the brain swelling that produces these symptoms is often a slow process, these symptoms may not surface for days to weeks after the injury.
Common symptoms of a closed-head injury include:
- headache
- dizziness
- nausea
- slurred speech
- vomiting
Symptoms reported by sufferers include: pain and aching to the neck and back, referred pain to the shoulders, sensory disturbance (such as pins and needles) to the arms and legs, and headaches. Symptoms can appear directly after the injury, but often are not felt until days afterwards. Whiplash is usually confined to the spine. The most common areas of the spine affected by whiplash are the neck and middle of the spine. "Neck" pain is very common between the shoulder and the neck. The "missing link" of whiplash may be towards or inside the shoulder and this would explain why neck therapy alone frequently does not give lasting relief.
Cognitive symptoms following whiplash trauma, such as being easily distracted or irritated, seems to be common and possibly linked to a poorer prognosis.
The degree of tissue disruption caused by a projectile is related to the size of the temporary versus permanent cavity it creates as it passes through tissue. The extent of cavitation, in turn, is related to the following characteristics of the projectile:
- Kinetic energy: KE = 1/2"mv" (where "m" is mass and "v" is velocity). This helps to explain why wounds produced by missiles of higher mass and/or higher velocity produce greater tissue disruption than missiles of lower mass and velocity.
- Impulse: IMP = "mv". The impulse is working in a couple with kinetic energy, featuring the same characteristics
- Yaw
- Deformation
- Fragmentation
The immediate damaging effect of a gunshot wound is typically severe bleeding, and with it the potential for hypovolemic shock, a condition characterized by inadequate delivery of oxygen to vital organs. In the case of traumatic hypovolemic shock, this failure of adequate oxygen delivery is due to blood loss, as blood is the means of delivering oxygen to the body's constituent parts. Devastating effects can result when a bullet strikes a vital organ such as the heart or lungs, or damages a component of the central nervous system such as the spine or brain.
Common causes of death following gunshot injury include exsanguination, hypoxia caused by pneumothorax, catastrophic injury to the heart and larger blood vessels, and damage to the brain or central nervous system. Additionally, gunshot wounds typically involve a large degree of nearby tissue disruption and destruction due to the physical effects of the projectile. Non-fatal gunshot wounds frequently have severe and long-lasting effects, typically some form of major disfigurement and/or permanent disability.
Gunshot injuries can vary widely from case to case since the location of the injury can be in any part of the body, with wide variations in entry point. Also, the path and possible fragmentation of the bullet within the body is unpredictable. The study of the dynamics of bullets in gunshot injuries is called terminal ballistics.
As a rule, all gunshot wounds are considered medical emergencies that require immediate treatment. Hospitals are generally required to report all gunshot wounds to police.
Symptoms are dependent on the type of TBI (diffuse or focal) and the part of the brain that is affected. Unconsciousness tends to last longer for people with injuries on the left side of the brain than for those with injuries on the right. Symptoms are also dependent on the injury's severity. With mild TBI, the patient may remain conscious or may lose consciousness for a few seconds or minutes. Other symptoms of mild TBI include headache, vomiting, nausea, lack of motor coordination, dizziness, difficulty balancing, lightheadedness, blurred vision or tired eyes, ringing in the ears, bad taste in the mouth, fatigue or lethargy, and changes in sleep patterns. Cognitive and emotional symptoms include behavioral or mood changes, confusion, and trouble with memory, concentration, attention, or thinking. Mild TBI symptoms may also be present in moderate and severe injuries.
A person with a moderate or severe TBI may have a headache that does not go away, repeated vomiting or nausea, convulsions, an inability to awaken, dilation of one or both pupils, slurred speech, aphasia (word-finding difficulties), dysarthria (muscle weakness that causes disordered speech), weakness or numbness in the limbs, loss of coordination, confusion, restlessness, or agitation. Common long-term symptoms of moderate to severe TBI are changes in appropriate social behavior, deficits in social judgment, and cognitive changes, especially problems with sustained attention, processing speed, and executive functioning. Alexithymia, a deficiency in identifying, understanding, processing, and describing emotions occurs in 60.9% of individuals with TBI. Cognitive and social deficits have long-term consequences for the daily lives of people with moderate to severe TBI, but can be improved with appropriate rehabilitation.
When the pressure within the skull (intracranial pressure, abbreviated ICP) rises too high, it can be deadly. Signs of increased ICP include decreasing level of consciousness, paralysis or weakness on one side of the body, and a blown pupil, one that fails to constrict in response to light or is slow to do so. Cushing's triad, a slow heart rate with high blood pressure and respiratory depression is a classic manifestation of significantly raised ICP. Anisocoria, unequal pupil size, is another sign of serious TBI. Abnormal posturing, a characteristic positioning of the limbs caused by severe diffuse injury or high ICP, is an ominous sign.
Small children with moderate to severe TBI may have some of these symptoms but have difficulty communicating them. Other signs seen in young children include persistent crying, inability to be consoled, listlessness, refusal to nurse or eat, and irritability.
The "Québec Task Force" ("QTF") has divided whiplash-associated disorders into five grades.
- Grade 0: no neck pain, stiffness, or any physical signs are noticed
- Grade 1: neck complaints of pain, stiffness or tenderness only but no physical signs are noted by the examining physician.
- Grade 2: neck complaints and the examining physician finds decreased range of motion and point tenderness in the neck.
- Grade 3: neck complaints plus neurological signs such as decreased deep tendon reflexes, weakness and sensory deficits.
- Grade 4: neck complaints and fracture or dislocation, or injury to the spinal cord.
Brain injuries can be classified into mild, moderate, and severe categories. The Glasgow Coma Scale (GCS), the most commonly used system for classifying TBI severity, grades a person's level of consciousness on a scale of 3–15 based on verbal, motor, and eye-opening reactions to stimuli. In general, it is agreed that a TBI with a GCS of 13 or above is mild, 9–12 is moderate, and 8 or below is severe. Similar systems exist for young children. However, the GCS grading system has limited ability to predict outcomes. Because of this, other classification systems such as the one shown in the table are also used to help determine severity. A current model developed by the Department of Defense and Department of Veterans Affairs uses all three criteria of GCS after resuscitation, duration of post-traumatic amnesia (PTA), and loss of consciousness (LOC). It also has been proposed to use changes that are visible on neuroimaging, such as swelling, focal lesions, or diffuse injury as method of classification. Grading scales also exist to classify the severity of mild TBI, commonly called concussion; these use duration of LOC, PTA, and other concussion symptoms.
Electrical injury is a physiological reaction caused by electric current passing through the (human) body. Electric shock occurs upon contact of a (human) body part with any source of electricity that causes a sufficient magnitude of current to pass through the victim's flesh, viscera or hair. Physical contact with energized wiring or devices is the most common cause of an electric shock. In cases of exposure to high voltages, such as on a power transmission tower, physical contact with energized wiring or objects may not be necessary to cause electric shock, as the voltage may be sufficient to "jump" the air gap between the electrical device and the victim.
The injury related to electric shock depends on the magnitude of the current. Very small currents may be imperceptible or produce a light tingling sensation. A shock caused by low current that would normally be harmless could startle an individual and cause injury due to suddenly jerking away from the source of electricity, resulting in one striking a stationary object, dropping an object being held or falling. Stronger currents may cause some degree of discomfort or pain, while more intense currents may induce involuntary muscle contractions, preventing the victim from breaking free of the source of electricity. Still larger currents usually result in tissue damage and may trigger fibrillation of the heart or cardiac arrest, any of which may ultimately be fatal. If death results from an electric shock the cause of death is generally referred to as electrocution.
Heating due to resistance can cause extensive and deep burns. Voltage levels of 500 to 1000 volts tend to cause internal burns due to the large energy (which is proportional to the duration multiplied by the square of the voltage divided by resistance) available from the source. Damage due to current is through tissue heating. For most cases of high-energy electrical trauma, the Joule heating in the deeper tissues along the extremity will reach damaging temperatures in a few seconds.
In the short term, concussions do not pose a serious problem and a player suffering may experience: headache, dizziness, loss of memory, blurred vision, confusion, disorientation and /or sensitiveness to bright light and loud noises. However, the real danger occurs after repeated concussions suffered by the same player, if the player returns to play immediately after contracting a concussion or too soon after suffering one. If the player returns to play immediately or too soon after, there is an increased risk of another concussion (which is much more serious) as well as to the rest of the body due to a slower reaction time. The player can also suffer from a number of psychological issues like depression, as well as permanent brain damage and severe brain swelling. A player, regardless of age or level of competition, should not return to play or training following a concussion, without a medical clearance from a registered medical doctor.
Signs and symptoms include crepitus (a crunching sound made when broken bone ends rub together), pain, tenderness, bruising, and swelling over the fracture site. The fracture may visibly move when the person breathes, and it may be bent or deformed, potentially forming a "step" at the junction of the broken bone ends that is detectable by palpation. Associated injuries such as those to the heart may cause symptoms such as abnormalities seen on electrocardiograms.
The upper and middle parts of the sternum are those most likely to fracture, but most sternal fractures occur below the sternal angle.
As with other types of fractures, scapular fracture may be associated with pain localized to the area of the fracture, tenderness, swelling, and crepitus (the crunching sound of bone ends grinding together). Since scapular fractures impair the motion of the shoulder, a person with a scapular fracture has a reduced ability to move the shoulder joint. Signs and symptoms may be masked by other injuries that accompany the scapular fracture.
In the long-term, varying degrees of pain, function, and appearance may affect the traumatized region during the subject's lifetime. A burst fracture results in a permanent decrease in anterior height, varying degrees of kyphosis, and possible changes in neurological signal intensity with possible deterioration over time. Over the subject's lifetime, the subject experiences ancillary pain and discomfort in the spine and limbs caused by increasing neurological dysfunction.
Concussions are proven to cause loss of brain function. This can lead to physical and emotional symptoms such as attention disorders, depression, headaches, nausea, and amnesia. These symptoms can last for days or week and even after the symptoms have gone, the brain still won't be completely normal. Players with multiple concussions can have drastically worsened symptoms and exponentially increased recovery time.
Researchers at UCLA have, for the first time, used a brain-imaging tool to identify a certain protein found in five retired NFL players. The presence and accumulation of tau proteins found in the five living players, are associated with Alzheimer's disease. Previously, this type of exam could only be performed with an autopsy. Scientists at UCLA created a chemical marker that binds to the abnormal proteins and they are able to view this with Positron Emission Tomography (PET) scan. Researcher at UCLA, Gary Small explains, "Providing a non-invasive method for early detection is a critical first step in developing interventions to prevent symptom onset and progression in CTE".
In a high energy injury to the midfoot, such as a fall from a height or a motor vehicle accident, the diagnosis of a Lisfranc injury should, in theory at least, pose less of a challenge. There will be deformity of the midfoot and X-ray abnormalities should be obvious. Further, the nature of the injury will create heightened clinical suspicion and there may even be disruption of the overlying skin and compromise of the blood supply. Typical X-ray findings would include a gap between the base of the first and second toes. The diagnosis becomes more challenging in the case of low energy incidents, such as might occur with a twisting injury on the racquetball court, or when an American Football lineman is forced back upon a foot that is already in a fully plantar flexed position. Then, there may only be complaint of inability to bear weight and some mild swelling of the forefoot or midfoot. Bruising of the arch has been described as diagnostic in these circumstances but may well be absent. Typically, conventional radiography of the foot is utilized with standard non-weight bearing views, supplemented by weight bearing views which may demonstrate widening of the interval between the first and second toes, if the initial views fail to show abnormality. Unfortunately, radiographs in such circumstances have a sensitivity of 50% when non-weight bearing and 85% when weight bearing, meaning that they will appear normal in 15% of cases where a Lisfranc injury actually exists. In the case of apparently normal x-rays, if clinical suspicion remains, advanced imaging such as magnetic resonance imaging (MRI) or X-ray computed tomography (CT) is a logical next step.
Stress fractures are typically discovered after a rapid increase in exercise. They most commonly present as pain with weight bearing that increases with activity. The pain usually subsides with rest but may be constantly present with a more serious bone injury. There is usually an area of localized tenderness on or near the bone and generalized swelling to the area. Percussion or palpation to the bone may reproduce symptoms. Anterior tibial stress fractures elicit focal tenderness on the anterior tibial crest, while posterior medial stress fractures can be tender at the posterior tibial border.
Running is a form of exercise and described as the one of the world's most accessible sport. However, its high-impact nature can lead to injury. Approximately 50% of runners are affected by some form of running injuries or running-related injuries (RRI) annually, and some estimates suggest an even higher frequency. The frequency of various RRI depend on the type of running, as runners vary significantly in factors such as speed and mileage. RRI can be both acute and chronic. Many of the common injuries that plague runners are chronic, developing over a longer period of time, as opposed to injury caused by sudden trauma, such as strains. These are often the result of overuse. Common overuse injuries include stress fractures, Achilles tendinitis, Iliotibial band syndrome, Patellofemoral pain (runners knee), and plantar fasciitis.
Proper running form is important in injury prevention. A major aspect of running form is foot strike pattern. The way in which the foot makes contact with the ground determines how the force of the impact is distributed throughout the body. Different types of modern running shoes are created to manipulate foot strike pattern in an effort to reduce the risk of injury. In recent years, barefoot running has increased in popularity in many western countries, because of claims that it reduces the risk of injury. However, this has not been proven and is still debated.
The majority of blast-related ocular injuries occur in soldiers who present with other life-threatening injuries that require immediate intervention. Current Combat Support Hospital (CSH) protocol requires the surgical stabilization of any life-threatening injuries, as well as hemodynamic stability, prior to initial eye evaluation and surgical repair. Therefore, initiation of emergency ophthalmic care often occurs hours after injury. Initial examination by a military ophthalmologist begins with gross examination of each eye and orbital. 73-82% of all ocular injuries resulting from mine explosions are due to fragmentation of shrapnel upon detonation, so gross anatomical inspection by penlight may not rule out open globe injury. Harlan JB, Pieramici DJ. Evaluation of patients with ocular trauma. Ophthalmol Clin North Am. 2002; 15(2):153-61./ref> Computerized tomography (CT) may detect foreign matter and aid the clinician in determining the presence of an open-globe injury.
Blast-related ocular trauma comprises a specialized group of penetrating and blunt force injuries to the eye and its structure caused by the detonation of explosive materials. The incidence of ocular trauma due to blast forces has increased dramatically with the introduction of new explosives technology into modern warfare. The availability of these volatile materials, coupled with the tactics of contemporary terrorism, has caused a rise in the number of homemade bombs capable of extreme physical harm.
Because of the high frequency of associated injuries, clinicians are taught to suspect that a patient has multiple severe injuries if a sternal fracture is present. Sternal fracture is commonly associated with injuries to the heart and lungs; if a person is injured with enough force to fracture the sternum, injuries such as myocardial and pulmonary contusions are likely. Other associated injuries that may occur include damage to blood vessels in the chest, myocardial rupture, head and abdominal injuries, flail chest, and vertebral fracture. Sternal fractures may also accompany rib fractures and are high-energy enough injuries to cause bronchial tears (ruptures of the bronchioles). They may hinder breathing. Due to the associated injuries, the mortality rate for people with sternal fracture is high, at an estimated 25–45%. However, when sternal fractures occur in isolation, their outcome is very good.
There is controversy over the question of whether the presence of sternal fracture is an indication of cardiac injuries.