Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Concussion symptoms can last for an undetermined amount of time depending on the player and the severity of the concussion. A concussion will affect the way a person's brain works.
There is the potential of post-concussion syndrome, post-concussion syndrome is defined as a set of symptoms that may continue after a concussion is sustained. Post-concussion symptoms can be classified into physical, cognitive, emotional, and sleep symptoms. Physical symptoms include a headache, nausea, and vomiting. Athletes may experience cognitive symptoms that include speaking slowly, difficulty remembering and concentrating. Emotional and sleep symptoms include irritability, sadness, drowsiness, and trouble falling asleep.
Along with the classification of post-concussion symptoms, the symptoms can also be described as immediate and delayed. The immediate symptoms are experienced immediately after a concussion such as: memory loss, disorientation, and poor balance. Delayed symptoms are experienced in the later stages and include sleeping disorders and behavioral changes. Both immediate and delayed symptoms can continue for long periods of time and have a negative impact on recovery. According to research, 20-25% of individuals who have sustained a concussion experienced chronic, delayed symptoms.
Playing through concussion makes people more vulnerable to getting hit again, and that is why most sports have test that trainers will perform to prevent getting hit a second time. A second blow can cause a rare condition known as second-impact syndrome, which can result in severe injury or death. Second-impact syndrome is when an athlete suffers a second head injury before the brain has adequate time to heal in between concussions.
Repeated concussions have been linked to a variety of neurological disorders among athletes, including CTE, Alzheimer's Disease, Parkinsonism and Amyotrophic lateral sclerosis (ALS).
Concussions and other types of repetitive play-related head blows in American football have been shown to be the cause of chronic traumatic encephalopathy (CTE), which has led to player suicides and other debilitating symptoms after retirement, including memory loss, depression, anxiety, headaches, and also sleep disturbances.
The list of ex-NFL players that have either been diagnosed "post-mortem" with CTE or have reported symptoms of CTE continues to grow.
Cognitive symptoms include confusion, disorientation, and difficulty focusing attention. Loss of consciousness may occur, but is not necessarily correlated with the severity of the concussion if it is brief. Post-traumatic amnesia, in which events following the injury cannot be recalled, is a hallmark of concussion. Confusion, another concussion hallmark, may be present immediately or may develop over several minutes. A person may repeat the same questions, be slow to respond to questions or directions, have a vacant stare, or have slurred or incoherent speech. Other MTBI symptoms include changes in sleeping patterns and difficulty with reasoning, concentrating, and performing everyday activities.
Concussion can result in changes in mood including crankiness, loss of interest in favorite activities or items, tearfulness, and displays of emotion that are inappropriate to the situation. Common symptoms in concussed children include restlessness, lethargy, and irritability.
Concussion is associated with a variety of symptoms, which typically occur rapidly after the injury. Early symptoms usually subside within days or weeks. The number and type of symptoms any one individual suffers varies widely.
Head injuries in sports of any level (junior, amateur, professional) are the most dangerous and sickening kind of injuries that can occur in sport, and are becoming more common in Australian sport. Concussions are the most common side effect of a head injury and are defined as "temporary unconsciousness or confusion and other symptoms caused by a blow to the head." A concussion also falls under the category of Traumatic Brain Injury (TBI). Especially in contact sports like Australian rules football and Rugby issues with concussions are prevalent, and methods to deal with, prevent and treat concussions are continuously being updated and researched to deal with the issue. Concussions pose a serious threat to the patients’ mental and physical health, as well as their playing career, and can result in lasting brain damage especially if left untreated. The signs that a player may have a concussion are: loss of consciousness or non-responsiveness, balance problems (unsteadiness on feet, poor co-ordination), a dazed, blank or vacant look and/or confusion and unawareness of their surroundings. Of course the signs are relevant only after the player experiences a blow to the head.
Concussions, a type of traumatic brain injury, are a frequent concern for those playing sports, from children and teenagers to professional athletes. Repeated concussions are a known cause of various neurological disorders, most notably chronic traumatic encephalopathy (CTE), which in professional athletes has led to premature retirement, erratic behavior and even suicide. Because concussions cannot be seen on X-rays or CT scans, attempts to prevent concussions have been difficult.
A concussion is defined as a complex pathophysiological process affecting the brain, induced by traumatic forces. Concussion may be caused either by a direct blow to the head, face, neck or elsewhere on the body with an "impulsive" force transmitted to the head. Also, you don't have to pass out when you get a concussion (Aubry et al., 2001).
The dangers of repeated concussions have long been known for boxers and wrestlers; a form of CTE common in these two sports, dementia pugilistica (DP), was first described in 1928. An awareness of the risks of concussions in other sports began to grow in the 1990s, and especially in the mid-2000s, in both the medical and the professional sports communities, as a result of studies of the brains of prematurely deceased American football players, who showed extremely high incidences of CTE (see concussions in American football).
As of 2012, the four major professional sports leagues in the United States and Canada have concussion policies. Sports-related concussions are generally analyzed by athletic training or medical staff on the sidelines using an evaluation tool for cognitive function known as the Sport Concussion Assessment Tool (SCAT), a symptom severity checklist, and a balance test.
Severe head injuries can lead to permanent vegetative states or death, therefore being able to recognize symptoms and get medical attention is very important. Symptoms of a severe closed-head injury include:
- coma
- seizures
- loss of consciousness
Concussions in England's professional rugby union are the most common injury gained. Concussion can occur where an individual experiences a minor injury to the head. Commonly occurring in high contact sporting activities; American football, boxing, and rugby. It can also occur in recreational activities like horse riding, jumping, cycling, and skiing. The reason being that it doesn't have to be something to strike you in the proximity of your brain, but can also be caused by rapid change of movement, giving the skull not enough time to move with your body, causing your brain to press against your skull. With rugby being such a contact and fast moving sport, it is no wonder why there is concussion and other head injuries occurring. With the development of equipment and training methods, these will help benefit the players on the field know what could happen and how they can help with preventing it.
Because the brain swelling that produces these symptoms is often a slow process, these symptoms may not surface for days to weeks after the injury.
Common symptoms of a closed-head injury include:
- headache
- dizziness
- nausea
- slurred speech
- vomiting
A concussion, which is known as a subset traumatic brain injury (TBI), is when a force comes in contact with the head, neck or face, or fast movement of the head, causing a functional injury to the brain. Depending on where the location of impact, depends on the severity of the injury. It is short-lived impairment of neurological function, the brains ability to process information, which can be resolved in seven to ten days. Not all concussion involves the loss of consciousness, with it occurring in less than 10% of concussions. Second-impact syndrome is when a player has obtained a second concussion when you either return to field the same day, or return to play before a complete recovery from a previous concussion. This is a result from brain swelling, from vascular congestion and increased intracranial pressure, this can be fatal to a player as it is a very difficult medical injury to control. The brain is surrounded by cerebrospinal fluid, which protects it from light trauma. More severe impacts, or the forces associated with rapid acceleration, may not be absorbed by this cushion. Concussion may be caused by impact forces, in which the head strikes or is struck by something, or impulsive forces, in which the head moves without itself being subject to blunt trauma (for example, when the chest hits something and the head snaps forward). Chronic traumatic encephalopathy, or "CTE", is an example of the cumulative damage that can occur as the result of multiple concussions or less severe blows to the head. The condition was previously referred to as "dementia pugilistica", or "punch drunk" syndrome, as it was first noted in boxers. The disease can lead to cognitive and physical handicaps such as parkinsonism, speech and memory problems, slowed mental processing, tremor, depression, and inappropriate behavior. It shares features with Alzheimer's disease. Lamont sai od th PSCA after his incident::
Presentation varies according to the injury. Some patients with head trauma stabilize and other patients deteriorate. A patient may present with or without neurological deficit. Patients with concussion may have a history of seconds to minutes unconsciousness, then normal arousal. Disturbance of vision and equilibrium may also occur. Common symptoms of head injury include coma, confusion, drowsiness, personality change, seizures, nausea and vomiting, headache and a lucid interval, during which a patient appears conscious only to deteriorate later.
Symptoms of skull fracture can include:
- leaking cerebrospinal fluid (a clear fluid drainage from nose, mouth or ear) may be and is strongly indicative of basilar skull fracture and the tearing of sheaths surrounding the brain, which can lead to secondary brain infection.
- visible deformity or depression in the head or face; for example a sunken eye can indicate a maxillar fracture
- an eye that cannot move or is deviated to one side can indicate that a broken facial bone is pinching a nerve that innervates eye muscles
- wounds or bruises on the scalp or face.
- Basilar skull fractures, those that occur at the base of the skull, are associated with Battle's sign, a subcutaneous bleed over the mastoid, hemotympanum, and cerebrospinal fluid rhinorrhea and otorrhea.
Because brain injuries can be life-threatening, even people with apparently slight injuries, with no noticeable signs or complaints, require close observation; They have a chance for severe symptoms later on. The caretakers of those patients with mild trauma who are released from the hospital are frequently advised to rouse the patient several times during the next 12 to 24 hours to assess for worsening symptoms.
The Glasgow Coma Scale (GCS) is a tool for measuring degree of unconsciousness and is thus a useful tool for determining severity of injury. The Pediatric Glasgow Coma Scale is used in young children. The widely used PECARN Pediatric Head Injury/Trauma Algorithm helps physicians weigh risk-benefit of imaging in a clinical setting given multiple factors about the patient—including mechanism/location of injury, age of patient, and GCS score.
Diffuse axonal injury, or DAI, usually occurs as the result of an acceleration or deceleration motion, not necessarily an impact. Axons are stretched and damaged when parts of the brain of differing density slide over one another. Prognoses vary widely depending on the extent of damage.
In the short term, concussions do not pose a serious problem and a player suffering may experience: headache, dizziness, loss of memory, blurred vision, confusion, disorientation and /or sensitiveness to bright light and loud noises. However, the real danger occurs after repeated concussions suffered by the same player, if the player returns to play immediately after contracting a concussion or too soon after suffering one. If the player returns to play immediately or too soon after, there is an increased risk of another concussion (which is much more serious) as well as to the rest of the body due to a slower reaction time. The player can also suffer from a number of psychological issues like depression, as well as permanent brain damage and severe brain swelling. A player, regardless of age or level of competition, should not return to play or training following a concussion, without a medical clearance from a registered medical doctor.
Symptoms of CTE, which occur in four stages, generally appear 8 to 10 years after an athlete experiences repetitive mild traumatic brain injury.
First-stage symptoms include attention deficit hyperactivity disorder as well as confusion, disorientation, dizziness, and headaches. Second-stage symptoms include memory loss, social instability, impulsive behavior, and poor judgment. Third and fourth stages include progressive dementia, movement disorders, hypomimia, speech impediments, sensory processing disorder, tremors, vertigo, deafness, depression and suicidality.
Additional symptoms include dysarthria, dysphagia, cognitive disorder such as amnesia, and ocular abnormalities, such as ptosis.
The condition manifests as dementia, or declining mental ability, problems with memory, dizzy spells or lack of balance to the point of not being able to walk under one's own power for a short time and/or Parkinsonism, or tremors and lack of coordination. It can also cause speech problems and an unsteady gait. Patients with DP may be prone to inappropriate or explosive behavior and may display pathological jealousy or paranoia.
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease found in people who have had multiple head injuries. Symptoms may include behavioral problems, mood problems, and problems with thinking. This typically does not begin until years after the injuries. It often gets worse over time and can result in dementia. It is unclear if the risk of suicide is altered.
Most documented cases have occurred in athletes involved in contact sports such as football, wrestling, ice hockey, and soccer. Other risk factors include being in the military, prior domestic violence, and repeated banging of the head. The exact amount of trauma required for the condition to occur is unknown. Definitive diagnosis can only occur at autopsy. It is a form of tauopathy.
As of 2017 there is no specific treatment. Rates of disease have been found to be about 30% among those with a history of multiple head injuries. Population rates, however, are unclear. Research into brain damage as a result of repeated head injuries began in the 1920s, at which time the condition was known as "punch drunk". Changing the rules in some sports has been discussed as a means of prevention.
Concussions are proven to cause loss of brain function. This can lead to physical and emotional symptoms such as attention disorders, depression, headaches, nausea, and amnesia. These symptoms can last for days or week and even after the symptoms have gone, the brain still won't be completely normal. Players with multiple concussions can have drastically worsened symptoms and exponentially increased recovery time.
Researchers at UCLA have, for the first time, used a brain-imaging tool to identify a certain protein found in five retired NFL players. The presence and accumulation of tau proteins found in the five living players, are associated with Alzheimer's disease. Previously, this type of exam could only be performed with an autopsy. Scientists at UCLA created a chemical marker that binds to the abnormal proteins and they are able to view this with Positron Emission Tomography (PET) scan. Researcher at UCLA, Gary Small explains, "Providing a non-invasive method for early detection is a critical first step in developing interventions to prevent symptom onset and progression in CTE".
In medicine, a stinger, also called a "burner" or "nerve pinch injury", is a neurological injury suffered by athletes, mostly in high-contact sports such as ice hockey, rugby, American football, and wrestling. The spine injury is characterized by a shooting or stinging pain that travels down one arm, followed by numbness and weakness. Many athletes in contact sports have suffered stingers, but they are often unreported to medical professionals.
Anyone who experiences significant trauma to his or her head or neck needs immediate medical evaluation for the possibility of a spinal injury. In fact, it's safest to assume that trauma victims have a spinal injury until proven otherwise because:
- The time between injury and treatment can be critical in determining the extent of complications and the amount of recovery
- A serious spinal injury is not always immediately obvious. If it is not recognized, more severe injury may occur
- Numbness or paralysis may develop immediately or come on gradually as bleeding or swelling occurs in or around the spinal cord
Pain, especially headache, is a common complication following a TBI. Being unconscious and lying still for long periods can cause blood clots to form (deep venous thrombosis), which can cause pulmonary embolism. Other serious complications for patients who are unconscious, in a coma, or in a vegetative state include pressure sores, pneumonia or other infections, and progressive multiple organ failure.
The risk of post-traumatic seizures increases with severity of trauma (image at right) and is particularly elevated with certain types of brain trauma such as cerebral contusions or hematomas. As many as 50% of people with penetrating head injuries will develop seizures. People with early seizures, those occurring within a week of injury, have an increased risk of post-traumatic epilepsy (recurrent seizures occurring more than a week after the initial trauma) though seizures can appear a decade or more after the initial injury and the common seizure type may also change over time. Generally, medical professionals use anticonvulsant medications to treat seizures in TBI patients within the first week of injury only and after that only if the seizures persist.
Neurostorms may occur after a severe TBI. The lower the Glasgow Coma Score (GCS), the higher the chance of Neurostorming. Neurostorms occur when the patient's Autonomic Nervous System (ANS), Central Nervous System (CNS), Sympathetic Nervous System (SNS), and ParaSympathetic Nervous System (PSNS) become severely compromised https://www.brainline.org/story/neurostorm-century-part-1-3-medical-terminology . This in turn can create the following potential life-threatening symptoms: increased IntraCranial Pressure (ICP), tachycardia, tremors, seizures, fevers, increased blood pressure, increased Cerebral Spinal Fluid (CSF), and diaphoresis https://www.brainline.org/story/neurostorm-century-part-1-3-medical-terminology. A variety of medication may be used to help decrease or control Neurostorm episodes https://www.brainline.org/story/neurostorm-century-part-3-3-new-way-life.
Parkinson's disease and other motor problems as a result of TBI are rare but can occur. Parkinson's disease, a chronic and progressive disorder, may develop years after TBI as a result of damage to the basal ganglia. Other movement disorders that may develop after TBI include tremor, ataxia (uncoordinated muscle movements), and myoclonus (shock-like contractions of muscles).
Skull fractures can tear the meninges, the membranes that cover the brain, leading to leaks of cerebrospinal fluid (CSF). A tear between the dura and the arachnoid membranes, called a CSF fistula, can cause CSF to leak out of the subarachnoid space into the subdural space; this is called a subdural hygroma. CSF can also leak from the nose and the ear. These tears can also allow bacteria into the cavity, potentially causing infections such as meningitis. Pneumocephalus occurs when air enters the intracranial cavity and becomes trapped in the subarachnoid space. Infections within the intracranial cavity are a dangerous complication of TBI. They may occur outside of the dura mater, below the dura, below the arachnoid (meningitis), or within the brain itself (abscess). Most of these injuries develop within a few weeks of the initial trauma and result from skull fractures or penetrating injuries. Standard treatment involves antibiotics and sometimes surgery to remove the infected tissue.
Injuries to the base of the skull can damage nerves that emerge directly from the brain (cranial nerves). Cranial nerve damage may result in:
- Paralysis of facial muscles
- Damage to the nerves responsible for eye movements, which can cause double vision
- Damage to the nerves that provide sense of smell
- Loss of vision
- Loss of facial sensation
- Swallowing problems
Hydrocephalus, post-traumatic ventricular enlargement, occurs when CSF accumulates in the brain, resulting in dilation of the cerebral ventricles and an increase in ICP. This condition can develop during the acute stage of TBI or may not appear until later. Generally it occurs within the first year of the injury and is characterized by worsening neurological outcome, impaired consciousness, behavioral changes, ataxia (lack of coordination or balance), incontinence, or signs of elevated ICP.
Any damage to the head or brain usually results in some damage to the vascular system, which provides blood to the cells of the brain. The body can repair small blood vessels, but damage to larger ones can result in serious complications. Damage to one of the major arteries leading to the brain can cause a stroke, either through bleeding from the artery or through the formation of a blood clot at the site of injury, blocking blood flow to the brain. Blood clots also can develop in other parts of the head. Other types of vascular complications include vasospasm, in which blood vessels constrict and restrict blood flow, and the formation of aneurysms, in which the side of a blood vessel weakens and balloons out.
Fluid and hormonal imbalances can also complicate treatment. Hormonal problems can result from dysfunction of the pituitary, the thyroid, and other glands throughout the body. Two common hormonal complications of TBI are syndrome of inappropriate secretion of antidiuretic hormone and hypothyroidism.
Another common problem is spasticity. In this situation, certain muscles of the body are tight or hypertonic because they cannot fully relax.
A stinger is an injury that is caused by restriction of the nerve supply to the upper extremity via the brachial plexus. The brachial plexus is formed by the anterior rami of the nerves at the 5th cervical level of the spinal cord all the way to the nerves at the 1st thoracic level of the spinal cord. The brachial plexus innervates the upper extremity as well as some muscles in the neck and shoulder. Damage to the brachial plexus can occur when the nerves are stretched too far from the head and neck; specifically the upper trunk of the plexus –nerve roots at the 5th and 6th cervical level –are primarily affected. The upper trunk provides part of the nerve to supply to the upper extremity via the Musculocutaneous, Axillary, Radial and Median nerves. It is for this reason that stingers do not affect both arms simultaneously, however it is possible for both arms to accrue injuries. Repeated nerve trauma can cause recurring stingers, chronic pain, and muscle weakness, while recovery can take weeks to months in severe cases.
"Hangman's fracture" is the colloquial name given to a fracture of both pedicles or "pars interarticularis" of the "axis vertebra" (C2).
TBI patients may have sensory problems, especially problems with vision; they may not be able to register what they are seeing or may be slow to recognize objects. Also, TBI patients often have difficulty with hand–eye coordination, causing them to seem clumsy or unsteady. Other sensory deficits include problems with hearing, smell, taste, or touch. Tinnitus, a ringing or roaring in the ears, may occur. A person with damage to the part of the brain that processes taste or smell may perceive a persistent bitter taste or noxious smell. Damage to the part of the brain that controls the sense of touch may cause a TBI patient to develop persistent skin tingling, itching, or pain. These conditions are rare and difficult to treat.
It remains a difficult medical challenge to prevent the sudden cardiac death of athletes, typically defined as natural, unexpected death from cardiac arrest within one hour of the onset of collapse symptoms, excluding additional time on mechanical life support. (Wider definitions of sudden death are also in use, but not usually applied to the athletic situation.) Most causes relate to congenital or acquired cardiovascular disease with no symptoms noted before the fatal event. The prevalence of any single, associated condition is low, probably less than 0.3% of the population in the athletes' age group, and the sensitivity and specificity of common screening tests leave much to be desired. The single most important predictor is fainting or near-fainting during exercise, which should require detailed explanation and investigation. The victims include many well-known names, especially in professional soccer, and close relatives are often at risk for similar cardiac problems.
The injury mainly occurs from falls, usually in elderly adults, and motor accidents mainly due to impacts of high force causing extension of the neck and great axial load onto the C2 vertebra.
In a study based in Norway, 60 percent of reported cervical fractures came from falls and 21 percent from motor-related accidents.
According to the Agency for Healthcare Research and Quality (AHRQ), the group under the highest risk of C2 fractures are elderly people within the age group of 65-84 (39.02 percent) at risks of falls (61 percent) or motor accidents (21 percent) in metropolitan areas (94 percent). 203 discharges were from the age group 1-17; 1843 from 18- to 44-year-olds; 2147 from 45- to 64-year-olds, 4890 from 65- to 84-year-olds, and 3440 from 85+-year-olds. Females accounted for 54.45 percent of occurrences while males accounted for the other 45.38 percent.
In a high energy injury to the midfoot, such as a fall from a height or a motor vehicle accident, the diagnosis of a Lisfranc injury should, in theory at least, pose less of a challenge. There will be deformity of the midfoot and X-ray abnormalities should be obvious. Further, the nature of the injury will create heightened clinical suspicion and there may even be disruption of the overlying skin and compromise of the blood supply. Typical X-ray findings would include a gap between the base of the first and second toes. The diagnosis becomes more challenging in the case of low energy incidents, such as might occur with a twisting injury on the racquetball court, or when an American Football lineman is forced back upon a foot that is already in a fully plantar flexed position. Then, there may only be complaint of inability to bear weight and some mild swelling of the forefoot or midfoot. Bruising of the arch has been described as diagnostic in these circumstances but may well be absent. Typically, conventional radiography of the foot is utilized with standard non-weight bearing views, supplemented by weight bearing views which may demonstrate widening of the interval between the first and second toes, if the initial views fail to show abnormality. Unfortunately, radiographs in such circumstances have a sensitivity of 50% when non-weight bearing and 85% when weight bearing, meaning that they will appear normal in 15% of cases where a Lisfranc injury actually exists. In the case of apparently normal x-rays, if clinical suspicion remains, advanced imaging such as magnetic resonance imaging (MRI) or X-ray computed tomography (CT) is a logical next step.
Sudden cardiac death occurs in approximately one per 200,000 young athletes per year, usually triggered during competition or practice. The victim is usually male and associated with soccer, basketball, ice hockey, or American football, reflecting the large number of athletes participating in these sustained and strenuous sports. For a normally healthy age group, the risk appears to be particularly magnified in competitive basketball, with sudden cardiac death rates as high as one per 3,000 annually for male basketball players in NCAA Division I. This is still far below the rate for the general population, estimated as one per 1,300–1,600 and dominated by the elderly. However, a population as large as the United States will experience the sudden cardiac death of a competitive athlete at the average rate of one every three days, often with significant local media coverage heightening public attention.