Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Below is a summary comparison of the signs and symptoms of DCI arising from its two components: "Decompression Sickness" and "Arterial Gas Embolism". Many signs and symptoms are common to both maladies, and it may be difficult to diagnose the actual problem. The dive history can be useful to distinguish which is more probable, but it is possible for both components to manifest at the same time following some dive profiles.
A more detailed account of the signs and symptoms of Decompression Sickness can be found here.
Narcosis results from breathing gases under elevated pressure, and may be classified by the principal gas involved. The noble gases, except helium and probably neon, as well as nitrogen, oxygen and hydrogen cause a decrement in mental function, but their effect on psychomotor function (processes affecting the coordination of sensory or cognitive processes and motor activity) varies widely. The effects of carbon dioxide consistently result in a diminution of mental and psychomotor function. The noble gases argon, krypton, and xenon are more narcotic than nitrogen at a given pressure, and xenon has so much anesthetic activity that it is a usable anesthetic at 80% concentration and normal atmospheric pressure. Xenon has historically been too expensive to be used very much in practice, but it has been successfully used for surgical operations, and xenon anesthesia systems are still being proposed and designed.
Inert gas asphyxiation is a form of asphyxiation which results from breathing a physiologically inert gas in the absence of oxygen, or a low amount of oxygen, rather than atmospheric air (which is largely composed of nitrogen and oxygen). Examples of physiologically inert gases, which have caused accidental or deliberate death by this mechanism, are: argon, helium, nitrogen and methane. The term "physiologically inert" is used to indicate a gas which has no toxic or anesthetic properties and does not act upon the heart or hemoglobin. Instead, the gas acts as a simple diluent to reduce oxygen concentration in inspired gas and blood to dangerously low levels, thereby eventually depriving all cells in the body of oxygen.
According to the U.S. Chemical Safety and Hazard Investigation Board, in humans, "breathing an oxygen deficient atmosphere can have serious and immediate effects, including unconsciousness after only one or two breaths. The exposed person has no warning and cannot sense that the oxygen level is too low." In the US, at least 80 people died due to accidental nitrogen asphyxiation between 1992 and 2002. Hazards with inert gases and the risks of asphyxiation are well established.
An occasional cause of accidental death in humans, inert gas asphyxia with gases including helium, nitrogen, methane, and argon, has been used as a suicide method. Inert gas asphyxia has been advocated by proponents of euthanasia, using a gas-retaining plastic hood device colloquially referred to as a suicide bag.
Nitrogen asphyxiation has been suggested by a number of lawmakers and other advocates as a more humane way to carry out capital punishment. In April 2015, the Oklahoma Governor Mary Fallin signed a bill authorizing nitrogen asphyxiation as an alternative execution method in cases where the state's preferred method of lethal injection was not available as an option.
Due to its perception-altering effects, the onset of narcosis may be hard to recognize. At its most benign, narcosis results in relief of anxiety – a feeling of tranquility and mastery of the environment. These effects are essentially identical to various concentrations of nitrous oxide. They also resemble (though not as closely) the effects of alcohol or cannabis and the familiar benzodiazepine drugs such as diazepam and alprazolam. Such effects are not harmful unless they cause some immediate danger to go unrecognized and unaddressed. Once stabilized, the effects generally remain the same at a given depth, only worsening if the diver ventures deeper.
The most dangerous aspects of narcosis are the impairment of judgement, multi-tasking and coordination, and the loss of decision-making ability and focus. Other effects include vertigo and visual or auditory disturbances. The syndrome may cause exhilaration, giddiness, extreme anxiety, depression, or paranoia, depending on the individual diver and the diver's medical or personal history. When more serious, the diver may feel overconfident, disregarding normal safe diving practices. Slowed mental activity, as indicated by increased reaction time and increased errors in cognitive function, are effects which increase the risk of a diver mismanaging an incident. Narcosis reduces both the perception of cold discomfort and shivering and thereby affects the production of body heat and consequently allows a faster drop in the core temperature in cold water, with reduced awareness of the developing problem.
The relation of depth to narcosis is sometimes informally known as "Martini's law", the idea that narcosis results in the feeling of one martini for every below depth. Professional divers use such a calculation only as a rough guide to give new divers a metaphor, comparing a situation they may be more familiar with.
Reported signs and symptoms are summarized against typical depths in meters and feet of sea water in the following table, closely adapted from "Deeper into Diving" by Lippman and Mitchell:
Diving disorders, or diving related medical conditions, are conditions associated with underwater diving, and include both conditions unique to underwater diving, and those that also occur during other activities. This second group further divides into conditions caused by exposure to ambient pressures significantly different from surface atmospheric pressure, and a range of conditions caused by general environment and equipment associated with diving activities.
Nitrous oxide, desflurane, and isoflurane are most the most commonly used anesthetic gases. They may cause some complications due to their leakage and storage failure.
Acute inhalation injury may result from frequent and widespread use of household cleaning agents and industrial gases (including chlorine and ammonia). The airways and lungs receive continuous first-pass exposure to non-toxic and irritant or toxic gases via inhalation. Irritant gases are those that, on inhalation, dissolve in the water of the respiratory tract mucosa and provoke an inflammatory response, usually from the release of acidic or alkaline radicals. Smoke, chlorine, phosgene, sulfur dioxide, hydrogen chloride, hydrogen sulfide, nitrogen dioxide, ozone, and ammonia are common irritants.
Depending on the type and amount of irritant gas inhaled, victims can experience symptoms ranging from minor respiratory discomfort to acute airway and lung injury and even death. A common response cascade to a variety of irritant gases includes inflammation, edema and epithelial sloughing, which if left untreated can result in scar formation and pulmonary and airway remodeling. Currently, mechanical ventilation remains the therapeutic mainstay for pulmonary dysfunction following acute inhalation injury.
The most common symptom of pulmonary edema is difficulty breathing, but may include other symptoms such as coughing up blood (classically seen as pink, frothy sputum), excessive sweating, anxiety, and pale skin. Shortness of breath can manifest as orthopnea (inability to lie down flat due to breathlessness) and/or paroxysmal nocturnal dyspnea (episodes of severe sudden breathlessness at night). These are common presenting symptoms of chronic pulmonary edema due to left ventricular failure. The development of pulmonary edema may be associated with symptoms and signs of "fluid overload"; this is a non-specific term to describe the manifestations of left ventricular failure on the rest of the body and includes peripheral edema (swelling of the legs, in general, of the "pitting" variety, wherein the skin is slow to return to normal when pressed upon), raised jugular venous pressure and hepatomegaly, where the liver is enlarged and may be tender or even pulsatile. Other signs include end-inspiratory crackles (sounds heard at the end of a deep breath) on auscultation and the presence of a third heart sound.
Decompression Illness (DCI) describes a range of symptoms arising from decompression of the body.
DCI can be caused by two different mechanisms, which result in overlapping sets of symptoms. The two mechanisms are:
- Decompression sickness (DCS), which results from metabolically inert gas dissolved in body tissue under pressure precipitating out of solution and forming bubbles during decompression. It typically afflicts underwater divers on poorly managed ascent from depth or aviators flying in inadequately pressurised aircraft.
- Arterial gas embolism (AGE), which is gas bubbles in the bloodstream. In the context of DCI these may form either as a result of bubble nucleation and growth by dissolved gas into the blood on depressurisation, which is a subset of DCS above, or by gas entering the blood mechanically as a result of pulmonary barotrauma. Pulmonary barotrauma is a rupturing of lung tissue by expansion of breathing gas held in the lungs during depressurisation. This may typically be caused by an underwater diver ascending while holding the breath after breathing at ambient pressure, ambient pressure escape from a submerged submarine without adequate exhalation during the ascent, or the explosive decompression of an aircraft cabin or other pressurised environment.
In any situation which could cause decompression sickness, there is also potentially a risk of arterial gas embolism, and as many of the symptoms are common to both conditions, it may be difficult to distinguish between the two in the field, and first aid treatment is the same for both mechanisms.
Many diving accidents or illnesses are related to the effect of pressure on gases in the body;
Barotrauma is physical injury to body tissues caused by a difference in pressure between a gas space inside or in contact with the body, and the surroundings .
Barotrauma occurs when the difference in pressure between the surroundings and the gas space makes the gas expand in volume, distorting adjacent tissues enough to rupture cells or damage tissue by deformation. A special case, where pressure in tissue is reduced to the level that causes dissolved gas to come out of solution as bubbles, is called "decompression sickness", "the bends", or "caisson disease".
Several organs are susceptible to barotrauma, however the cause is well understood and procedures for avoidance are clear. Nevertheless, barotrauma occurs and can be life-threatening, and procedures for first aid and further treatment are an important part of diving medicine.
- Barotraumas of descent (squeezes)
- Barotraumas of ascent (overexpansion injuries)
1.escape when filling refillable vapourizers,
2.Leaks in the high pressure system between the nitrous oxide (N2O) cylinder,
3.Can escape from around the patient's anesthesia mask,
4.Can escape from around the patient's endotracheal tube
5.Can in an anesthetic medical procedure.
Respiratory failure results from inadequate gas exchange by the respiratory system, meaning that the arterial oxygen, carbon dioxide or both cannot be kept at normal levels. A drop in the oxygen carried in blood is known as hypoxemia; a rise in arterial carbon dioxide levels is called hypercapnia. Respiratory failure is classified as either Type I or Type II, based on whether there is a high carbon dioxide level. The definition of respiratory failure in clinical trials usually includes increased respiratory rate, abnormal blood gases (hypoxemia, hypercapnia, or both), and evidence of increased work of breathing.
The normal partial pressure reference values are: oxygen PaO more than , and carbon dioxide PaCO lesser than .
When humans breathe in an asphyxiant gas, such as pure nitrogen, helium, neon, argon, sulfur hexafluoride, methane, or any other physiologically inert gas(es), they exhale carbon dioxide without re-supplying oxygen. Physiologically inert gases (those that have no toxic effect, but merely dilute oxygen) are generally free of odor and taste. As such, the human subject detects little abnormal sensation as the oxygen level falls. This leads to asphyxiation (death from lack of oxygen) without the painful and traumatic feeling of suffocation (the hypercapnic alarm response, which in humans arises mostly from carbon dioxide levels rising), or the side effects of poisoning. In scuba diving rebreather accidents, there is often little sensation but euphoria—however, a slow decrease in oxygen breathing gas content has effects which are quite variable. By contrast, suddenly breathing pure inert gas causes oxygen levels in the blood to fall precipitously, and may lead to unconsciousness in only a few breaths, with no symptoms at all.
Some animal species are better equipped than humans to detect hypoxia, and these species are more uncomfortable in low-oxygen environments that result from inert gas exposure.
Pulmonary edema is fluid accumulation in the tissue and air spaces of the lungs. It leads to impaired gas exchange and may cause respiratory failure. It is due to either failure of the left ventricle of the heart to remove blood adequately from the pulmonary circulation (cardiogenic pulmonary edema), or an injury to the lung parenchyma or vasculature of the lung (noncardiogenic pulmonary edema). Treatment is focused on three aspects: firstly improving respiratory function, secondly, treating the underlying cause, and thirdly avoiding further damage to the lung. Pulmonary edema, especially acute, can lead to fatal respiratory distress or cardiac arrest due to hypoxia. It is a cardinal feature of congestive heart failure. The term is from the Greek (oídēma, "swelling"), from οἰδέω (oidéō, "I swell").
Hypoxemia (PaO2 6.0kPa).
The basic defect in type 2 respiratory failure is characterized by:
Type 2 respiratory failure is caused by inadequate alveolar ventilation; both oxygen and carbon dioxide are affected. Defined as the buildup of carbon dioxide levels (PCO) that has been generated by the body but cannot be eliminated. The underlying causes include:
- Increased airways resistance (chronic obstructive pulmonary disease, asthma, suffocation)
- Reduced breathing effort (drug effects, brain stem lesion, extreme obesity)
- A decrease in the area of the lung available for gas exchange (such as in chronic bronchitis)
- Neuromuscular problems (Guillain–Barré syndrome, motor neuron disease)
- Deformed (kyphoscoliosis), rigid (ankylosing spondylitis), or flail chest.
Smoke inhalation injury, either by itself but more so in the presence of body surface burn, can result in severe lung-induced morbidity and mortality. The most common cause of death in burn centers is now respiratory failure. The September 11 attacks in 2001 and forest fires in U.S. states such as California and Nevada are examples of incidents that have caused smoke inhalation injury. Injury to the lungs and airways is not only due to deposition of fine particulate soot but also due to the gaseous components of smoke, which include phosgene, carbon monoxide, and sulfur dioxide.
The symptoms of generalized hypoxia depend on its severity and acceleration of onset.
In the case of altitude sickness, where hypoxia develops gradually, the symptoms include fatigue, numbness / tingling of extremities, nausea, and anoxia. In severe hypoxia, or hypoxia of very rapid onset, ataxia, confusion / disorientation / hallucinations / behavioral change, severe headaches / reduced level of consciousness, papilloedema, breathlessness, pallor, tachycardia, and pulmonary hypertension eventually leading to the late signs cyanosis, slow heart rate / cor pulmonale, and low blood pressure followed by death.
Because hemoglobin is a darker red when it is not bound to oxygen (deoxyhemoglobin), as opposed to the rich red color that it has when bound to oxygen (oxyhemoglobin), when seen through the skin it has an increased tendency to reflect blue light back to the eye. In cases where the oxygen is displaced by another molecule, such as carbon monoxide, the skin may appear 'cherry red' instead of cyanotic. Hypoxia can cause premature birth, and injure the liver, among other deleterious effects.
If tissue is not being perfused properly, it may feel cold and appear pale; if severe, hypoxia can result in cyanosis, a blue discoloration of the skin. If hypoxia is very severe, a tissue may eventually become gangrenous.
Extreme pain may also be felt at or around the site.
Symptoms of HPNS include tremors, myoclonic jerking, somnolence, EEG changes, visual disturbance, nausea, dizziness, and decreased mental performance.
HPNS has two components, one resulting from the speed of compression and the other from the absolute pressure. The compression effects may occur when descending below at rates greater than a few metres per minute, but reduce within a few hours once the pressure has stabilised. The effects from depth become significant at depths exceeding and remain regardless of the time spent at that depth.
The susceptibility of divers and animals to HPNS varies over a wide range depending on the individual, but has little variation between different dives by the same diver.
An early stage of hyperthermia can be "heat exhaustion" (or "heat prostration" or "heat stress"), whose symptoms include heavy sweating, rapid breathing and a fast, weak pulse. If the condition progresses to heat stroke, then hot, dry skin is typical as blood vessels dilate in an attempt to increase heat loss. An inability to cool the body through perspiration may cause the skin to feel dry.
Other signs and symptoms vary. Accompanying dehydration can produce nausea, vomiting, headaches, and low blood pressure and the latter can lead to fainting or dizziness, especially if the standing position is assumed quickly.
In severe heat stroke, there may be confused, hostile, or seemingly intoxicated behavior. Heart rate and respiration rate will increase (tachycardia and tachypnea) as blood pressure drops and the heart attempts to maintain adequate circulation. The decrease in blood pressure can then cause blood vessels to contract reflexively, resulting in a pale or bluish skin color in advanced cases. Young children, in particular, may have seizures. Eventually, organ failure, unconsciousness and death will result.
Acute:
- Cough
- Difficulty Breathing
- Abnormal lung sounds (wet, gurgling sounding breaths)
- Chest pain, tightness or burning
Chronic:
- Persistent cough
- Shortness of breath
- Increased susceptibility to respiratory illness
Symptoms of chronic chemical pneumonitis may or may not be present, and can take months or years to develop to the point of noticeability.
Aspirin overdose has potentially serious consequences, sometimes leading to significant morbidity and death. Patients with mild intoxication frequently have nausea and vomiting, abdominal pain, lethargy, ringing in the ears, and dizziness. More significant signs and symptoms occur in more severe poisonings and include high body temperature, fast breathing rate, respiratory alkalosis, metabolic acidosis, low blood potassium, low blood glucose, hallucinations, confusion, seizure, cerebral edema, and coma. The most common cause of death following an aspirin overdose is cardiopulmonary arrest usually due to pulmonary edema.
In humans, hyperthermia is defined as a temperature greater than , depending on the reference used, that occurs without a change in the body's temperature set point.
The normal human body temperature can be as high as in the late afternoon. Hyperthermia requires an elevation from the temperature that would otherwise be expected. Such elevations range from mild to extreme; body temperatures above can be life-threatening.
The typical signs of malignant hyperthermia are due to a hypercatabolic state, which presents as a very high temperature, an increased heart rate and abnormally rapid breathing, increased carbon dioxide production, increased oxygen consumption, mixed acidosis, rigid muscles, and rhabdomyolysis. These signs can develop any time during the administration of the anesthetic triggering agents. It is difficult to find confirmed cases in the postoperative period more than several minutes after discontinuation of anesthetic agents.