Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Simple l-TGA does not immediately produce any visually identifiable symptoms, but since each ventricle is intended to handle different blood pressures, the right ventricle may eventually hypertrophy due to increased pressure and produce symptoms such as dyspnea or fatigue.
Complex l-TGA may produce immediate or more quickly-developed symptoms, depending on the nature, degree and number of accompanying defect(s). If a right-to-left or bidirectional shunt is present, the list of symptoms may include mild cyanosis.
-Transposition of the great arteries (d-Transposition of the great arteries, dextro-TGA, or d-TGA), sometimes also referred to as complete transposition of the great arteries, is a birth defect in the large arteries of the heart. The primary arteries (the aorta and the pulmonary artery) are d.
It is called a cyanotic congenital heart defect (CHD) because the newborn infant turns blue from lack of oxygen.
In segmental analysis, this condition is described as with , or just ventriculoarterial discordance.
d-TGA is often referred to simply as transposition of the great arteries (TGA); however, TGA is a more general term which may also refer to levo-transposition of the great arteries (l-TGA).
Another term commonly used to refer to both d-TGA and l-TGA is transposition of the great vessels (TGV), although this term might have an even broader meaning than TGA.
d vessels can present a large variety of , and/or . The effects may range from a change in blood pressure to an interruption in circulation, depending on the nature and degree of the misplacement and which vessels are involved.
Although "transposed" literally means "swapped", many types of TGV involve vessels that are in abnormal positions, while not actually being swapped with each other. The terms TGV and TGA are most commonly used in reference to dextro-TGA – in which the arteries "are" in swapped positions; however, both terms are also commonly used, though to a slightly lesser extent, in reference to levo-TGA – in which both the arteries and the ventricles are swapped; while other defects in this category are almost never referred to by either of these terms.
In dextro-Transposition of the great arteries (dextro-TGA) deoxygenated blood from the right heart is pumped immediately through the aorta and circulated to the body and the heart itself, bypassing the lungs altogether, while the left heart pumps oxygenated blood continuously back into the lungs through the pulmonary artery. In effect, two separate "circular" (parallel) circulatory systems are created. It is called a cyanotic congenital heart defect (CHD) because the newborn infant turns blue from lack of oxygen.
In a normal heart, oxygen-depleted ("blue") blood is pumped from the right side of the heart, through the pulmonary artery, to the lungs where it is oxygenated. The oxygen-rich ("red") blood then returns to the left heart, via the pulmonary veins, and is pumped through the aorta to the rest of the body, including the heart muscle itself.
With d-TGA, deoxygenated blood from the right heart is pumped immediately through the aorta and circulated to the body and the heart itself, bypassing the lungs altogether, while the left heart pumps oxygenated blood continuously back into the lungs through the pulmonary artery. In effect, two separate "circular" (parallel) circulatory systems are created, rather than the "figure 8" (in series) circulation of a normal cardio-pulmonary system.
-Transposition of the great arteries (L-Transposition of the great arteries), also commonly referred to as congenitally corrected transposition of the great arteries (CC-TGA), is an acyanotic congenital heart defect (CHD) in which the primary arteries (the aorta and the pulmonary artery) are d, with the aorta anterior and to the left of the pulmonary artery; the left and right ventricles with their corresponding atrioventricular valves are also transposed.
Use of the term "corrected" has been disputed by many due to the frequent occurrence of other abnormalities and or acquired disorders in l-TGA patients.
In segmental analysis, this condition is described as discordance (ventricular inversion) with discordance.l-TGA is often referred to simply as transposition of the great arteries (TGA); however, TGA is a more general term which may also refer to dextro-transposition of the great arteries (d-TGA).
Symptoms are caused by vascular compression of the airway, esophagus or both. Presentation is often within the first month (neonatal period) and usually within the first 6 months of life. Starting at birth an inspiratory and expiratory stridor (high pitch noise from turbulent airflow in trachea) may be present often in combination with an expiratory wheeze. The severity of the stridor may depend on the patient’s body position. It can be worse when the baby is lying on his back rather than its side. Sometimes the stridor can be relieved by extending the neck (lifting the chin up). Parents may notice that the baby’s cry is hoarse and the breathing noisy. Frequently a persistent cough is present. When the airway obstruction is significant there may be episodes of severe cyanosis (“blue baby”) that can lead to unconsciousness. Recurrent respiratory infections are common and secondary pulmonary secretions can further increase the airway obstruction.
Secondary to compression of the esophagus babies often feed poorly. They may have difficulties in swallowing liquids with choking or regurgitating and increased respiratory obstruction during feeding. Older patients might refuse to take solid food, although most infants with severe symptoms nowadays are operated upon before they are offered solid food.
Occasionally patients with double aortic arches present late (during later childhood or adulthood). Symptoms may mimic asthma.
Left to right shunting heart defects include:
- Ventricular septal defect (VSD) (30% of all congenital heart defects)
- Atrial septal defect (ASD)
- Atrioventricular septal defect (AVSD)
- Patent ductus arteriosus (PDA)
- Previously, Patent ductus arteriosus (PDA) was listed as acyanotic but in actuality it can be cyanotic due to pulmonary hypertension resulting from the high pressure aorta pumping blood into the pulmonary trunk, which then results in damage to the lungs which can then result in pulmonary hypertension as well as shunting of blood back to the right ventricle. This consequently results in less oxygenation of blood due to alveolar damage as well as oxygenated blood shunting back to the right side of the heart, not allowing the oxygenated blood to pass through the pulmonary vein and back to the left atrium.
- (Edit - this is called Eisenmenger's syndrome and can occur with Atrial septal defect and ventricular septal defect as well (actually more common in ASD and VSD) therefore PDA can still be listed as acyanotic as, acutely, it is)
Others:
- levo-Transposition of the great arteries (l-TGA)
Acyanotic heart defects without shunting include:
- Pulmonary stenosis (a narrowing of the pulmonary valve)
- Aortic stenosis
- Coarctation of the aorta
Double aortic arch (DAA) is a relatively rare congenital cardiovascular malformation. DAA is an of the aortic arch in which two aortic arches form a complete vascular ring that can compress the trachea and/or esophagus. Most commonly there is a larger (dominant) right arch behind and a smaller (hypoplastic) left aortic arch in front of the trachea/esophagus. The two arches join to form the descending aorta which is usually on the left side (but may be right-sided or in the midline). In some cases the end of the smaller left aortic arch closes (left atretic arch) and the vascular tissue becomes a fibrous cord. Although in these cases a complete ring of two patent aortic arches is not present, the term ‘vascular ring’ is the accepted generic term even in these anomalies.
The symptoms are related to the compression of the trachea, esophagus or both by the complete vascular ring. Diagnosis can often be suspected or made by chest x-ray, barium esophagram, or echocardiography. Computed tomography (CT) or magnetic resonance imaging (MRI) show the relationship of the aortic arches to the trachea and esophagus and also the degree of tracheal narrowing. Bronchoscopy can be useful in internally assessing the degree of tracheomalacia. Treatment is surgical and is indicated in all symptomatic patients. In the current era the risk of mortality or significant morbidity after surgical division of the lesser arch is low. However, the preoperative degree of tracheomalacia has an important impact on postoperative recovery. In certain patients it may take several months (up to 1–2 years) for the obstructive respiratory symptoms (wheezing) to disappear.
Cor triatriatum (or triatrial heart) is a congenital heart defect where the left atrium (cor triatriatum sinistrum) or right atrium (cor triatriatum dextrum) is subdivided by a thin membrane, resulting in three atrial chambers (hence the name).
Cor triatriatum represents 0.1% of all congenital cardiac malformations and may be associated with other cardiac defects in as many as 50% of cases. The membrane may be complete or may contain one or more fenestrations of varying size.
Cor triatrium sinistrum is more common. In this defect there is typically a proximal chamber that receives the pulmonic veins and a distal (true) chamber located more anteriorly where it empties into the mitral valve. The membrane that separates the atrium into two parts varies significantly in size and shape. It may appear similar to a diaphragm or be funnel-shaped, bandlike, entirely intact (imperforate) or contain one or more openings (fenestrations) ranging from small, restrictive-type to large and widely open.
In the pediatric population, this anomaly may be associated with major congenital cardiac lesions such as tetralogy of Fallot, double outlet right ventricle, coarctation of the aorta, partial anomalous pulmonary venous connection, persistent left superior vena cava with unroofed coronary sinus, ventricular septal defect, atrioventricular septal (endocardial cushion) defect, and common atrioventricular canal. Rarely, asplenia or polysplenia has been reported in these patients.
In the adult, cor triatriatum is frequently an isolated finding.
Cor triatriatum dextrum is extremely rare and results from the complete persistence of the right sinus valve of the embryonic heart. The membrane divides the right atrium into a proximal (upper) and a distal (lower) chamber. The upper chamber receives the venous blood from both vena cavae and the lower chamber is in contact with the tricuspid valve and the right atrial appendage.
The natural history of this defect depends on the size of the communicating orifice between the upper and lower atrial chambers. If the communicating orifice is small, the patient is critically ill and may succumb at a young age (usually during infancy) to congestive heart failure and pulmonary edema. If the connection is larger, patients may present in childhood or young adulthood with a clinical picture similar to that of mitral stenosis. Cor triatriatum may also be an incidental finding when it is nonobstructive.
The disorder can be treated surgically by removing the membrane dividing the atrium.
An acyanotic heart defect, also known as non-cyanotic heart defect, is a class of congenital heart defects. In these, blood is shunted (flows) from the left side of the heart to the right side of the heart due to a structural defect (hole) in the interventricular septum. People often retain normal levels of oxyhemoglobin saturation in systemic circulation.
This term is outdated, because a person with an acyanotic heart defect may show cyanosis (turn blue due to insufficient oxygen in the blood).
Cyanotic heart defect is a group-type of congenital heart defect (CHD) that occurs due to deoxygenated blood bypassing the lungs and entering the systemic circulation or a mixture of oxygenated and unoxygenated blood entering the systemic circulation. It is caused by structural defects of the heart (i.e.: right-to-left, bidirectional shunting, malposition of the great arteries), or any condition which increases pulmonary vascular resistance. The result being the development of collateral circulation.
According to a study in cyanotic congenital heart disease (CCHD) in Sohag University, Upper Egypt. 50 neonates were diagnosed as suffering from cyanotic congenital heart disease (CCHD), they concluded that cyanotic congenital heart disease (CCHD) frequency was significant (9.5%) with D-TGA being the commonest type. Majority of neonates with Cyanotic congenital heart disease (CCHD) showed survival with suitable management.
Third-degree atrioventricular block (AV block), also known as complete heart block, is a medical condition in which the impulse generated in the sinoatrial node (SA node) in the atrium of the heart does not propagate to the ventricles.
Because the impulse is blocked, an accessory pacemaker in the lower chambers will typically activate the ventricles. This is known as an "escape rhythm". Since this accessory pacemaker also activates independently of the impulse generated at the SA node, two independent rhythms can be noted on the electrocardiogram (ECG).
- The P waves with a regular P-to-P interval (in other words, a sinus rhythm) represent the first rhythm.
- The QRS complexes with a regular R-to-R interval represent the second rhythm. The PR interval will be variable, as the hallmark of complete heart block is lack of any apparent relationship between P waves and QRS complexes.
Patients with third-degree AV block typically experience severe bradycardia (an abnormally-low measured heart rate), hypotension, and at times, hemodynamic instability.
Wellens' syndrome is an electrocardiographic manifestation of critical proximal left anterior descending (LAD) coronary artery stenosis in patients with unstable angina. It is characterized by symmetrical, often deep (>2 mm), T wave inversions in the anterior precordial leads. A less common variant is biphasic T wave inversions in the same leads.
First described by Hein J. J. Wellens and colleagues in 1982 in a subgroup of patients with unstable angina, it does not seem to be rare, appearing in 18% of patients in his original study. A subsequent prospective study identified this syndrome in 14% of patients at presentation and 60% of patients within the first 24 hours.
The presence of Wellens' syndrome carries significant diagnostic and prognostic value. All patients in the De Zwann's study with characteristic findings had more than 50% stenosis of the left anterior descending artery (mean = 85% stenosis) with complete or near-complete occlusion in 59%. In the original Wellens' study group, 75% of those with the typical syndrome manifestations had an anterior myocardial infarction. Sensitivity and specificity for significant (more or equal to 70%) stenosis of the LAD artery was found to be 69% and 89%, respectively, with a positive predictive value of 86%.
Wellens' sign has also been seen as a rare presentation of Takotsubo cardiomyopathy or stress cardiomyopathy.
Trifascicular block is a problem with the electrical conduction of the heart. It is diagnosed on an electrocardiogram (ECG/EKG) and has three features:
- prolongation of the (first degree AV block)
- right bundle branch block
- either left anterior fascicular block or left posterior fascicular block.
An episode of SVT may present with palpitations, dizziness, shortness of breath, or losing consciousness (fainting). The electrocardiogram (ECG) would appear as a narrow-complex SVT. Between episodes of tachycardia the affected person is likely to be asymptomatic, however, the ECG would demonstrate the classic delta wave in Wolff–Parkinson–White syndrome.
Atrioventricular reentrant tachycardia, atrioventricular reciprocating tachycardia or AVRT, is a type of abnormal fast heart rhythm and is classified as a type of supraventricular tachycardia (SVT). AVRT is most commonly associated with Wolff-Parkinson-White syndrome, in which an accessory pathway allows electrical signals from the heart's ventricles to enter the atria and cause earlier than normal contraction, which leads to repeated stimulation of the atrioventricular node.
Trifascicular block is important to diagnose because it is difficult to tell based on the surface ECG whether the prolonged PR interval is due to disease in the AV node or due to diffuse distal conduction system disease.
- In the former case, if the block at the AV node level becomes complete, the escape rhythm will originate from the bundle of His, which typically will generate heart rates in the 40s, allowing the individual to survive and complain of symptoms of fatigue or near-syncope to their physician.
- In the latter case, however, because the conduction system disease is diffuse in nature, the escape rhythm may be fascicular or ventricular, which may be at rates that are life-threateningly low.
Atrioventricular block (AV block) is a type of heart block in which the conduction between the atria and ventricles of the heart is impaired. Under normal conditions, the sinoatrial node (SA node) in the atria sets the pace for the heart, and these impulses travel down to the ventricles. In an AV block, this message does not reach the ventricles or is impaired along the way. The ventricles of the heart have their own pacing mechanisms, which can maintain a lowered heart rate in the absence of SA stimulation.
The causes of pathological AV block are varied and include ischaemia, infarction, fibrosis or drugs, and the blocks may be complete or may only impair the signaling between the SA and AV nodes. Certain AV blocks can also be found as normal variants, such as in athletes or children, and are benign. Strong vagal stimulation may also produce AV block. The cholinergic receptor types affected are the muscarinic receptors.
There are three types:
- First-degree atrioventricular block - The heart’s electrical signals move between the upper and lower chambers of the heart.PR interval greater than 0.20sec.
- Second-degree atrioventricular block - The heart’s electrical signals between the upper and lower signals of the heart are slowed by a much greater rate than in first-degree atrioventricular block. Type 1 (a.k.a. Mobitz 1, Wenckebach): Progressive prolongation of PR interval with dropped beats (the PR interval gets longer and longer; finally one beat drops) . Type 2 (a.k.a. Mobitz 2, Hay): PR interval remains unchanged prior to the P wave which suddenly fails to conduct to the ventricles.
- Mobitz I is characterized by a reversible block of the AV node. When the AV node is severely blocked, it fails to conduct an impulse. Mobitz I is a progressive failure. Some patients are asymptomatic; those who have symptoms respond to treatment effectively. There is low risk of the AV block leading to heart attack. Mobitz II is characterized by a failure of the His-Purkinje cells resulting in the lack of a supra ventricular impulse. These cardiac His-Purkinje cells are responsible for the rapid propagation in the heart. Mobitz II is caused by a sudden and unexpected failure of the His-Purkinje cells. The risks and possible effects of Mobitz II are much more severe than Mobitz I in that it can lead to severe heart attack.
- Third-degree atrioventricular block - No association between P waves and QRS complexes. The heart’s electrical signals are slowed to a complete halt. This means that none of the signals reach either the upper or lower chambers causing a complete blockage of the ventricles and can result in cardiac arrest. Third-degree atrioventricular block is the most severe of the types of heart ventricle blockages. Persons suffering from symptoms of third-degree heart block need emergency treatment including but not limited to a pacemaker.
In order to differentiate between the different degrees of the atrioventricular block (AV block), the First-Degree AV block occurs when an electrocardiogram (ECG) reads a PR interval that is more than 200 msec. This degree is typically asymptomatic and is only found through an ECG reading. Second-Degree AV block, although typically asymptomatic, has early signs that can be detected or are noticeable such as irregular heartbeat or a syncope. A Third-Degree AV block, has noticeable symptoms that present itself as more urgent such as: dizziness, fatigue, chest pain, pre syncope, or syncope.
Laboratory diagnosis for AV blocks include electrolyte, drug level and cardiac enzyme level tests. A clinical evaluation also looks at infection, myxedema, or connective tissue disease studies. In order to properly diagnose a patient with AV block, an electrocardiographic recording must be completed (ECG). Based on the P waves and QRS complexes that can be evaluated from these readings, that relationship will be the standardized test if an AV block is present or not. In order to identify this block based on the readings the following must occur: multiple ECG recordings, 24-hour Holter monitoring, and implant loop recordings. Other examinations for the detection of an AV block include electrophysiologic testing, echocardiography, and exercise.
Management includes a form of pharmacologic therapy that administers anticholinergic agents and is dependent upon the severity of a blockage. In severe cases or emergencies, atropine administration or isoproterenol infusion would allow for temporary relief if bradycardia is the cause for the blockage, but if His-Purkinje system is the result of the AV block then pharmacologic therapy is not recommended.
Many conditions can cause third-degree heart block, but the most common cause is coronary ischemia. Progressive degeneration of the electrical conduction system of the heart can lead to third-degree heart block. This may be preceded by first-degree AV block, second-degree AV block, bundle branch block, or bifascicular block. In addition, acute myocardial infarction may present with third-degree AV block.
An "inferior wall myocardial infarction" may cause damage to the AV node, causing third-degree heart block. In this case, the damage is usually transitory. Studies have shown that third-degree heart block in the setting of an inferior wall myocardial infarction typically resolves within 2 weeks. The escape rhythm typically originates in the AV junction, producing a narrow complex escape rhythm.
An "anterior wall myocardial infarction" may damage the distal conduction system of the heart, causing third-degree heart block. This is typically extensive, permanent damage to the conduction system, necessitating a permanent pacemaker to be placed. The escape rhythm typically originates in the ventricles, producing a wide complex escape rhythm.
Third-degree heart block may also be congenital and has been linked to the presence of lupus in the mother. It is thought that maternal antibodies may cross the placenta and attack the heart tissue during gestation. The cause of congenital third-degree heart block in many patients is unknown. Studies suggest that the prevalence of congenital third-degree heart block is between 1 in 15,000 and 1 in 22,000 live births.
Hyperkalemia in those with previous cardiac disease and Lyme disease can also result in third-degree heart block.
Parasystole is a kind of arrhythmia caused by the presence and function of a secondary pacemaker in the heart, which works in parallel with the SA node. Parasystolic pacemakers are protected from depolarization by the SA node by some kind of "entrance block". This block can be complete or incomplete.
Parasystolic pacemakers can exist in both the atrium or the ventricle. Atrial parasystolia are characterized by narrow QRS complexes
Two forms of ventricular parasystole have been described in the literature, fixed parasystole and modulated parasystole. Fixed ventricular parasystole occurs when an ectopic pacemaker is protected by entrance block, and thus its activity is completely independent from the sinus pacemaker activity. Hence, the ectopic pacemaker is expected to fire at a fixed rate.
Therefore, on ECG, the coupling intervals of the manifest ectopic beats will wander through the basic cycle of the sinus rhythm. Accordingly, the traditional electrocardiographic criteria used to recognize the fixed form of parasystole are:
- the presence of variable coupling intervals of the manifest ectopic beats;
- inter-ectopic intervals that are simple multiples of a common denominator;
- fusion beats.
According to the modulated parasystole hypothesis, rigid constancy of a pacemaker might be expected if the entrance block were complete, but if there is an escape route available for the emergence of ectopic activity, then clearly there must be an effective ionic communication, not complete insulation, between the two tissues. If there is an electrical
communication between the two, then the depolarization of the surrounding ventricle may influence the ectopic pacemaker. That influence will be electrotonic; depolarization of the surrounding field will induce a partial depolarization
of the pacemaker cells. Therefore, appropriate diagnosis of modulated parasystole relies upon the construction of a “phase response curve” as theoretical evidence of modulation of the ectopic pacemaker cycle length by the electrotonic activity generated by the sinus discharges across the area of protection. In this case, the timing of the arrival of the electronic stimulus will serve to delay or advance the subsequent pacemaker activation. In this case, the coupling intervals between the manifest ectopic and sinus discharges will be either fixed or variable, depending on the cycle length relations between the two pacemakers.
The causes of internal carotid artery dissection can be broadly categorised into two classes: spontaneous or traumatic.
The signs and symptoms of carotid artery dissection may be divided into ischemic and non-ischemic categories:
"Non-ischemic signs and symptoms"
- Localised headache, particularly around one of the eyes.
- Neck pain
- Decreased pupil size with drooping of the upper eyelid (Horner syndrome)
- Pulsatile tinnitus
"Ischemic signs and symptoms"
- Temporary vision loss
- Ischemic stroke
Signs and symptoms presented by the occurrence of alcoholic cardiomyopathy are the result of the heart failing and usually occur after the disease has progressed to an advanced stage. Therefore, the symptoms have a lot in common with other forms of cardiomyopathy. These symptoms can include the following:
- Ankle, feet, and leg swelling (edema)
- Overall swelling
- Loss of appetite
- Shortness of breath (dyspnea), especially with activity
- Breathing difficulty while lying down
- Fatigue, weakness, faintness
- Decreased alertness or concentration
- Cough containing mucus, or pink, frothy material
- Decreased urine output (oliguria)
- Need to urinate at night (nocturia)
- Heart palpitations (irregular heart beat)
- Rapid pulse (tachycardia)