Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The typical infant who has congenital glaucoma usually is initially referred to an ophthalmologist because of apparent corneal edema. The commonly described triad of epiphora (excessive tearing), blepharospasm and photophobia may be missed until the corneal edema becomes apparent.
The most common sign of CEA is the presence of an area of undeveloped choroid (appearing as a pale spot) lateral to the optic disc. The choroid is a collection of blood vessels supplying the retina. CEA can also cause retinal or scleral coloboma, coloboma of the optic disc, retinal detachment, or intraocular hemorrhage. It can be diagnosed by fundoscopy by the age of six or seven weeks. Severe cases may be blind.
In the recessive form corneal clouding is observed at birth or within the neonatal period, nystagmus is often present, but no photophobia or epiphora is seen. In the autosomal dominant type corneal opacification is usually seen in the first or second year of life and progresses slowly, and nystagmus is infrequently seen.
Reis-Bücklers corneal dystrophy, also known as corneal dystrophy of Bowman layer, type I, is a rare, corneal dystrophy of unknown cause, in which the Bowman's layer of the cornea undergoes disintegration. The disorder is inherited in an autosomal dominant fashion, and is associated with mutations in the gene TGFB1.
Reis-Bücklers dystrophy causes a cloudiness in the corneas of both eyes, which may occur as early as 1 year of age, but usually develops by 4 to 5 years of age. It is usually evident within the first decade of life. This cloudiness, or opacity, causes the corneal epithelium to become elevated, which leads to corneal opacities. The corneal erosions may prompt attacks of redness and swelling in the eye (ocular hyperemia), eye pain, and photophobia. Significant vision loss may occur.
Reis-Bücklers dystrophy is diagnosed by clinical history physical examination of the eye. Labs and imaging studies are not necessary. Treatment may include a complete or partial corneal transplant, or photorefractive keratectomy.
Primary juvenile glaucoma is glaucoma that develops due to ocular hypertension and is evident either at birth or within the first few years of life. It is caused due to abnormalities in the anterior chamber angle development that obstruct aqueous outflow in the absence of systemic anomalies or other ocular malformation.
Patients with Reis-Bücklers dystrophy develop a reticular pattern of cloudiness in the cornea. This cloudiness, or opacity, usually appears in both eyes (bilaterally) in the upper cornea by 4 or 5 years of age. The opacity elevates the corneal epithelium, eventually leading to corneal erosions that prompt attacks of ocular hyperemia, pain, and photophobia. These recurrent painful corneal epithelial erosions often begin as early as 1 year of age.
With time, the corneal changes progress into opacities in Bowman's membrane, which gradually becomes more irregular and more dense. Significant vision loss may occur. However, vascularization of the cornea is not present.
Collie eye anomaly (CEA) is a congenital, inherited, bilateral eye disease of dogs, which affects the retina, choroid, and sclera. It can be a mild disease or cause blindness. CEA is caused by a simple autosomal recessive gene defect. There is no treatment.
The most common malformation in patients with the syndrome is kidney hypodysplasia, which are small and underdeveloped kidneys, often leading to end-stage renal disease (ESRD). Estimates show approximately 10% of children with hypoplastic kidneys are linked to the disease. Many different histological abnormalities have been noted, including:
- decrease in nephron number associated with hypertrophy
- focal segmental glomerulosclerosis
- interstitial fibrosis and tubular atrophy
- multicystic dysplastic kidney
Up to one-third of diagnosed patients develop end stage kidney disease, which may lead to complete kidney failure.
Congenital hereditary corneal dystrophy (CHED) is a form of corneal dystrophy which presents at birth.
Ocular disc dysplasia is the most notable ocular defect of the disease. An abnormal development in the optic stalk causes optic disc dysplasia, which is caused by a mutation in the "Pax2" gene. The nerve head typically resembles the morning glory disc anomaly, but has also been described as a coloboma. A coloboma is the failure to close the choroid fissure, which is the opening from the ventral side of the retina in the optic stalk. Despite the similarities with coloboma and morning glory anomaly, significant differences exist such that optic disc dysplasia cannot be classified as either one entity.
Optic disc dysplasia is noted by an ill-defined inferior excavation, convoluted origin of the superior retinal vessels, excessive number of vessels, infrapapillary pigmentary disturbance, and slight band of retinal elevation adjacent to the disk. Some patients have normal or near normal vision, but others have visual impairment associated with the disease, though it is not certain if this is due only to the dysplastic optic nerves, or a possible contribution from macular and retinal malformations. The retinal vessels are abnormal or absent, in some cases having small vessels exiting the periphery of the disc. There is a great deal of clinical variability.
Aniridia is the absence of the iris, usually involving both eyes. It can be congenital or caused by a penetrant injury. Isolated aniridia is a congenital disorder which is not limited to a defect in iris development, but is a panocular condition with macular and optic nerve hypoplasia, cataract, and corneal changes. Vision may be severely compromised and the disorder is frequently associated with a number of ocular complications: nystagmus, amblyopia, buphthalmos, and cataract. Aniridia in some individuals occurs as part of a syndrome, such as WAGR syndrome (kidney nephroblastoma (Wilms tumour), genitourinary anomalies and intellectual disability), or Gillespie syndrome (cerebellar ataxia).
The presence of a small eye within the orbit can be a normal incidental finding but in most cases it is abnormal and results in blindness. The incidence is 14 per 100,000 and the condition affects 3-11% of blind children.
Familial exudative vitreoretinopathy (FEVR) ( ) is a genetic disorder affecting the growth and development of blood vessels in the retina of the eye. This disease can lead to visual impairment and sometimes complete blindness in one or both eyes. FEVR is characterized by exudative leakage and hemorrhage of the blood vessels in the retina, along with incomplete vascularization of the peripheral retina. The disease process can lead to retinal folds, tears, and detachments.
Microphthalmia (Greek: μικρός "micros" = small; ὀφθαλμός "ophthalmos" = eye), also referred as microphthalmos, is a developmental disorder of the eye in which one (unilateral microphthalmia) or both (bilateral microphthalmia) eyes are abnormally small and have anatomic malformations. It is different from nanophthalmos in which the eye is small in size but has no anatomical alterations.
A corneal dystrophy can be caused by an accumulation of extraneous material in the cornea, including lipids and cholesterol crystals.
CPEO is a slowly progressing disease. It may begin at any age and progresses over a period of 5–15 years. The first presenting symptom of ptosis is often unnoticed by the patient until the lids droop to the point of producing a visual field defect. Often, patients will tilt the head backwards to adjust for the slowly progressing ptosis of the lids. In addition, as the ptosis becomes complete, the patients will use the frontalis (forehead) muscle to help elevate the lids. The ptosis is typically bilateral, but may be unilateral for a period of months to years before the fellow lid becomes involved.
Ophthalmoplegia or the inability or difficulty to move the eye is usually symmetrical. As such, double vision is sometimes a complaint of these patients. The progressive ophthalmoplegia is often unnoticed till decreased ocular motility limits peripheral vision. Often someone else will point out the ocular disturbance to the patient. Patients will move their heads to adjust for the loss of peripheral vision caused by inability to abduct or adduct the eye. All directions of gaze are affected; however, downward gaze appears to be best spared. This is in contrast to progressive supranuclear palsy (PSP), which typically affects vertical gaze and spares horizontal gaze.
Corneal dystrophy may not significantly affect vision in the early stages. However, it does require proper evaluation and treatment for restoration of optimal vision. Corneal dystrophies usually manifest themselves during the first or second decade but sometimes later. It appears as grayish white lines, circles, or clouding of the cornea. Corneal dystrophy can also have a crystalline appearance.
There are over 20 corneal dystrophies that affect all parts of the cornea. These diseases share many traits:
- They are usually inherited.
- They affect the right and left eyes equally.
- They are not caused by outside factors, such as injury or diet.
- Most progress gradually.
- Most usually begin in one of the five corneal layers and may later spread to nearby layers.
- Most do not affect other parts of the body, nor are they related to diseases affecting other parts of the eye or body.
- Most can occur in otherwise totally healthy people, male or female.
Corneal dystrophies affect vision in widely differing ways. Some cause severe visual impairment, while a few cause no vision problems and are diagnosed during a specialized eye examination by an ophthalmologist. Other dystrophies may cause repeated episodes of pain without leading to permanent loss of vision.
Vision in the affected eye is impaired, the degree of which depends on the size of the defect, and typically affects the visual field more than visual acuity. Additionally, there is an increased risk of serous retinal detachment, manifesting in 1/3 of patients. If retinal detachment does occur, it is usually not correctable and all sight is lost in the affected area of the eye, which may or may not involve the macula.
Aniridia may be broadly divided into hereditary and sporadic forms. Hereditary aniridia is usually transmitted in an autosomal dominant manner (each offspring has a 50% chance of being affected), although rare autosomal recessive forms (such as Gillespie syndrome) have also been reported. Sporadic aniridia mutations may affect the WT1 region adjacent to the AN2 aniridia region, causing a kidney cancer called nephroblastoma (Wilms tumor). These patients often also have genitourinary abnormalities and intellectual disability (WAGR syndrome).
Several different mutations may affect the PAX6 gene. Some mutations appear to inhibit gene function more than others, with subsequent variability in the severity of the disease. Thus, some aniridic individuals are only missing a relatively small amount of iris, do not have foveal hypoplasia, and retain relatively normal vision. Presumably, the genetic defect in these individuals causes less "heterozygous insufficiency," meaning they retain enough gene function to yield a milder phenotype.
- AN
- Aniridia and absent patella
- Aniridia, microcornea, and spontaneously reabsorbed cataract
- Aniridia, cerebellar ataxia, and mental deficiency (Gillespie syndrome)
Anophthalmia, (Greek: ανόφθαλμος, "without eye"), is the medical term for the absence of one or both eyes. Both the globe (human eye) and the ocular tissue are missing from the orbit. The absence of the eye will cause a small bony orbit, a constricted mucosal socket, short eyelids, reduced palpebral fissure and malar prominence. Genetic mutations, chromosomal abnormalities, and prenatal environment can all cause anophthalmia. Anophthalmia is an extremely rare disease and is mostly rooted in genetic abnormalities. It can also be associated with other syndromes.
FEVR is, as its name suggests,
familial and can be inherited in an
autosomal dominant, autosomal
recessive or X-linked recessive pattern.1-3 It is caused by mutations in
FZD4, LRP5, TSPAN12 and NDP
genes, which impact the wingless/
integrated (Wnt) receptor signaling
pathway. 3 Disruption of this path
way leads to abnormalities of vascu-
lar growth in the peripheral retina. 2,3
It is typically bilateral, but asymmetric, with varying degrees of
progression over the individual’s
lifetime. Age of onset varies, and
visual outcome can be strongly
influenced by this factor. Patients
with onset before age three have a
more guarded long-term prognosis
whereas those with later onset are
more likely to have asymmetric
presentation with deterioration of
vision in one eye only. 2-3 However,
because FEVR is a lifelong disease,
these patients are at risk even as
adults.2 Ocular findings and useful
vision typically remain stable if the
patient does not have deterioration
before age 20.2,4 Due to the variability and unpredictability of the
disease course, patients with FEVR
should be followed throughout
their lifetime.
Clinical presentation can vary
greatly. In mild variations, patients
may experience peripheral vascular
changes, such as peripheral avascular zone, vitreoretinal adhesions,
arteriovenous anastomoses and a
V-shaped area of retinochoroidal
degeneration. 4 Severe forms may
present with neovascularization,
subretinal and intraretinal hemorrhages and exudation. 4 Neovascularization is a poor prognostic
indicator and can lead to retinal
folds, macular ectopia and tractional retinal detachment. 2,4 Widefield FA has been crucial in
helping to understand this disease,
as well as helping to confirm the
diagnosis. An abrupt cessation
of the retinal capillary network
in a scalloped edge posterior to
fibrovascular proliferations can
be made using FA.2,3,5 Patients can
also show delayed transit filling on
FA as well as delayed/patchy choroidal filling, bulbous vascular terminals, capillary dropout, venous/venous shunting and abnormal
branching patterns. 2,3,5 The staging of FEVR is similar
to that of retinopathy of prematurity. The first two stages involve an
avascular retinal periphery with or
without extraretinal vascularization (stage 1 and 2, respectively). 4 Stages three through five delineate
levels of retinal detachment; stage 3
is subtotal without foveal involvement, stage 4 is subtotal with foveal
involvement and stage 5 is a total
detachment, open or closed funnel.4
Because there was neovascularization in the absence of retinal detachment, our patient was
considered to have
stage 2.
Weakness of extraocular muscle groups including, the orbicularis oculi muscle as well as facial and limb muscles may be present in up to 25% of patients with CPEO. As a result of the orbicularis oculi weakness, patients may suffer from exposure keratopathy (damage to cornea) from the inability to close the eyes tightly. Frontalis muscle weakness may exacerbate the ptotic lids with the inability to compensate for the ptosis. Facial muscles may be involved which lead to atrophy of facial muscle groups producing a thin, expressionless face with some having difficulty with chewing. Neck, shoulder and extremity weakness with atrophy may affect some patients and can be mild or severe.
Mild visual impairment was seen in 95% of patients that were evaluated using the Visual Function Index (VF-14).
The ciliary muscles that control the lens shape and the iris muscles are often unaffected by CPEO.
Additional symptoms are variable, and may include exercise intolerance, cataracts, hearing loss, sensory axonal neuropathy, ataxia, clinical depression, hypogonadism, and parkinsonism.
Kearns–Sayre syndrome is characterized by onset before 15 years of age of CPEO, heart block and pigmentary retinopathy.
The first noticeable signs of the syndrome usually do not appear until after the first twelve months of the child’s life. The child usually has severe balance issues as he or she learns to sit or walk, often leaning or tilting the head toward the good eye to correct the brain’s skewed perception of the world. Often the child will fall in the same direction while walking or run into objects that are placed on his or her blind side. Additionally, family members may notice a white reflex in the pupil of an affected child instead of the normal red reflex when taking photographs. The presence of this phenomenon is dependent on the degree of the coloboma, with larger colobomas more likely to manifest this particular phenomenon.
This anomaly must be confirmed through pupillary dilation and examination of the optic disc, as the symptoms alone do not constitute a diagnosis.
People with optic nerve colobomas live relatively normal lives. Although non-prescription glasses should be worn for eye protection, this syndrome does not usually prevent the individual from living a normal life, driving cars, playing sports, reading, etc. Certain activities, however, may be more difficult for patients with optic nerve colobomas due to a compromised view of the world. Like most other eye conditions, a diagnosis of optic nerve coloboma precludes a person from certain occupations.
The most common symptoms of cone dystrophy are vision loss (age of onset ranging from the late teens to the sixties), sensitivity to bright lights, and poor color vision. Therefore, patients see better at dusk. Visual acuity usually deteriorates gradually, but it can deteriorate rapidly to 20/200; later, in more severe cases, it drops to "counting fingers" vision. Color vision testing using color test plates (HRR series) reveals many errors on both red-green and blue-yellow plates.
There are a few conditions that are associated with Anophthalmia. These include:
- Trisomy 13
- Lenz Syndrome
- Goldenhar-Gorlin Syndrome
- Waardenburg syndrome
Aside from these associative conditions, anophthalmia in only one eye tends to be associated with complications in the other eye. These risks include a higher chance of having glaucoma or a detached retina.