Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The joint changes include hyperextensibility (double-jointedness) and arthritis. Babies and young children with Stickler syndrome usually have very hyperextensible joints. As an affected child gets older, they may experience pain and stiffness from overuse of a joint. Osteoarthritis of the large joints often develops during the third or fourth decade. The joint changes in Marshall syndrome are of the same type but to a lesser degree. There also may be changes in the bones that show up on X-ray but generally are not a problem.
The clinical presentation of HFM is quite variable. The severity may depend on the extent of the area with an insufficient blood supply "in utero", and the gestational age of the fetus at which this occurs. In some people, the only physical manifestation may be a small and underdeveloped external ear. In more severe cases, multiple parts of the face may be affected. Some people with HFM may have sensorineural hearing loss and decreased visual acuity or even blindness.
Goldenhar syndrome can be thought of as a particularly severe form of HFM, in which extracranial anomalies are present to some extent. Some of the internal organs (especially the heart, kidneys, and lungs) may be underdeveloped, or in some cases even absent altogether. The affected organs are typically on the same side as the affected facial features, but bilateral involvement occurs in approximately 10% of cases. Deformities of the vertebral column such as scoliosis may also be observed in Goldenhar syndrome.
While there is no universally accepted grading scale, the OMENS scale (standing for Orbital, Mandible, Ear, Nerves and Soft tissue) was developed to help describe the heterogeneous phenotype that makes up this sequence or syndrome.
Intellectual disability is not typically seen in people with HFM.
The most severe problem associated with Stickler syndrome is Pierre Robin syndrome. This refers to a cleft palate resulting from a very small lower jaw. During early fetal life, the roof of the mouth is normally open and the sides of the palate have to come together to close. If the jaw is too small, there is not enough room for the tongue which is then pushed up and gets in the way of the closing palate. Sometimes the chin is so small the baby has problems with eating and breathing if the tongue blocks the back of the throat. Cleft palate is found less frequently in Marshall Syndrome than in Stickler syndrome but still more frequently than in the general population.
The facial features of Marshall Syndrome include a flat midface, the appearance of large eyes, short upturned nose, and a round face. The facial features of Stickler syndrome are less prominent but include a rather long flat face, and depressed nasal bridge.
Symptoms in people with Treacher Collins syndrome vary. Some individuals are so mildly affected that they remain undiagnosed, while others have moderate to severe facial involvement and life-threatening airway compromise. Most of the features of TCS are symmetrical and are already recognizable at birth.
The most common symptom of Treacher Collins syndrome is underdevelopment of the lower jaw and underdevelopment of the zygomatic bone. This can be accompanied by the tongue being retracted. The small mandible can result in a poor occlusion of the teeth or in more severe cases, trouble breathing or swallowing. Underdevelopment of the zygomatic bone gives the cheeks a sunken appearance.
The external ear is sometimes small, rotated, malformed, or absent entirely in people with TCS. Symmetric, bilateral narrowing or absence of the external ear canals is also described. In most cases, the bones of the middle ear and the middle ear cavity are misshapen. Inner ear malformations are rarely described. As a result of these abnormalities, a majority of the individuals with TCS have conductive hearing loss.
Most affected people also experience eye problems, including colobomata (notches) in the lower eyelids, partial or complete absence of eyelashes on the lower lid, downward angled eyelids, drooping of upper and lower eyelids, and narrowing of the tear ducts. Vision loss can occur and is associated with strabismus, refractive errors, and anisometropia. It can also be caused by severely dry eyes, a consequence of lower eyelid abnormalities and frequent eye infections.
Although an abnormally shaped skull is not distinctive for Treacher Collins syndrome, brachycephaly with bitemporal narrowing is sometimes observed. Cleft palate is also common.
Dental anomalies are seen in 60% of affected people, including tooth agenesis (33%), discoloration (enamel opacities) (20%), malplacement of the maxillary first molars (13%), and wide spacing of the teeth. In some cases, dental anomalies in combination with mandible hypoplasia result in a malocclusion. This can lead to problems with food intake and the ability to close the mouth.
Less common features of TCS may add to an affected person's breathing problems, including sleep apnea. Choanal atresia or stenosis is a narrowing or absence of the choanae, the internal opening of the nasal passages. Underdevelopment of the pharynx, can also narrow the airway.
Features related to TCS that are seen less frequently include nasal deformities, high-arched palate, macrostomia, preauricular hair displacement, cleft palate, hypertelorism, notched upper eyelid, and congenital heart defects.
The general public may associate facial deformity with developmental delay and intellectual disability, but more than 95% of people affected with TCS have normal intelligence. The psychological and social problems associated with facial deformity can affect quality of life in people with TCS.
The following is a list of symptoms that have been associated with Roberts syndrome:
- Bilateral Symmetric Tetraphocomelia- a birth defect in which the hands and feet are attached to shortened arms and legs
- Prenatal Growth Retardation
- Hypomelia (Hypoplasia)- the incomplete development of a tissue or organ; less drastic than aplasia, which is no development at all
- Oligodactyly- fewer than normal number of fingers or toes
- Thumb Aplasia- the absence of a thumb
- Syndactyly- condition in which two or more fingers (or toes) are joined together; the joining can involve the bones or just the skin between the fingers
- Clinodactyly- curving of the fifth finger (little finger) towards the fourth finger (ring finger) due to the underdevelopment of the middle bone in the fifth finger
- Elbow/Knee Flexion Contractures- an inability to fully straighten the arm or leg
- Cleft Lip- the presence of one or two vertical fissures in the upper lip; can be on one side (unilateral) or on both sides (bilateral)
- Cleft Palate- opening in the roof of the mouth
- Premaxillary Protrusion- upper part of the mouth sticks out farther than the lower part of the mouth
- Micrognathia- small chin
- Microbrachycephaly- smaller than normal head size
- Malar Hypoplasia- underdevelopment of the cheek bones
- Downslanting Palpebral Fissures- the outer corners of the eyes point downwards
- Ocular Hypertelorism- unusually wide-set eyes
- Exophthalmos- a protruding eyeball
- Corneal Clouding- clouding of the front-most part of the eye
- Hypoplastic Nasal Alae- narrowing of the nostrils that can decrease the width of the nasal base
- Beaked Nose- a nose with a prominent bridge that gives it the appearance of being curved
- Ear Malformations
- Intellectual disability
- Encephalocele (only in severe cases)- rare defect of the neural tube characterized by sac-like protrusions of the brain
Mortality is high among those severely affected by Roberts syndrome; however, mildly affected individuals may survive to adulthood
The syndrome consists of severe micrognathia, cleft lip and/or palate, hypoplasia or aplasia of the postaxial elements of the limbs, coloboma of the eyelids, and supernumerary nipples. Additional features of the syndrome include
downward-slanting palpebral fissures, malar hypoplasia, malformed ears, and a broad nasal ridge. Other features include supernumerary vertebrae and other vertebral segmentation and rib defects, heart defects (patent ductus arteriosus, ventricular septal defect and Ostium primum atrial septal defect), lung disease from chronic infection, single umbilical artery, absence of the hemidiaphragm, hypoplasia of the femora, ossification defects of the ischium and pubis, bilobed tongue, lung hypoplasia, and renal reflux.
The syndrome is a rare clinical disorder.
- Physical
- Overgrowth
- Accelerated skeletal maturation
- Dysmorphic facial features
- Prominent eyes
- Bluish sclerae
- Coarse eyebrows
- Upturned nose
- Radiologic examination
- Accelerated osseous maturation
- Phalangeal abnormalities
- Tubular thinning of the long bones
- Skull abnormalities
- Mental
- Often associated with intellectual disability (of variable degree)
TCS is often first suspected with characteristic symptoms observed during a physical exam. However, the clinical presentation of TCS can resemble other diseases, making diagnosis difficult. The OMENS classification was developed as a comprehensive and stage-based approach to differentiate the diseases. This acronym describes five distinct dysmorphic manifestations, namely orbital asymmetry, mandibular hypoplasia, auricular deformity, nerve development, and soft-tissue disease.
Orbital symmetry
- O0: normal orbital size, position
- O1: abnormal orbital size
- O2: abnormal orbital position
- O3: abnormal orbital size and position
Mandible
- M0: normal mandible
- M1: small mandible and glenoid fossa with short ramus
- M2: ramus short and abnormally shaped
1. 2A: glenoid fossa in anatomical acceptable position
2. 2B: Temperomandibular joint inferiorly (TMJ), medially, anteriorly displaced, with severely hypoplastic condyle
- M3: Complete absence of ramus, glenoid fossa, and TMJ
Ear
- E0: normal ear
- E1: Minor hypoplasia and cupping with all structures present
- E2: Absence of external auditory canal with variable hypoplasia of the auricle
- E3: Malposition of the lobule with absent auricle, lobular remnant usually inferior anteriorly displaced
Facial nerve
- N0: No facial nerve involvement
- N1: Upper facial nerve involvement (temporal or zygomatic branches)
- N2: Lower facial nerve involvement (buccal, mandibular or cervical)
- N3: All branches affected
Soft tissue
- S0: No soft tissue or muscle deficiency
- S1: Minimal tissue or muscle deficiency
- S2: Moderate tissue or muscle deficiency
- S3: Severe tissue or muscle deficiency
The condition is also known by various other names:
- Lateral facial dysplasia
- First and second branchial arch syndrome
- Oral-mandibular-auricular syndrome
- Otomandibular dysostosis
- Craniofacial microsomia
Franceschetti–Klein syndrome (also known as "Mandibulofacial dysostosis") is a syndrome that includes palpebral antimongoloid fissures, hypoplasia of the facial bones, macrostomia, vaulted palate, malformations of both the external and internal ear, buccal-auricular fistula, abnormal development of the neck with stretching of the cheeks, accessory facial fissures, and skeletal deformities.
It is sometimes equated with Treacher Collins syndrome.
Nager acrofacial dysostosis is a genetic congenital anomaly syndrome. Nager syndrome displays several or all of the following characteristics: underdevelopment of the cheek and jaw area, down-sloping of the opening of the eyes, lack or absence of the lower eyelashes, kidney or stomach reflux, hammer toes, shortened soft palate, lack of development of the internal and external ear, possible cleft palate, underdevelopment or absence of the thumb, hearing loss (see hearing loss with craniofacial syndromes) and shortened forearms, as well as poor movement in the elbow, and may be characterized by accessory tragi. Occasionally, affected individuals develop vertebral anomalies such as scoliosis. The inheritance pattern is said to be autosomal but there are arguments as to whether it is autosomal dominant or autosomal recessive. Most cases tend to be sporadic. Nager syndrome is also linked to five other similar syndromes: Miller syndrome, Treacher Collins, Pierre Robin, Genee-Wiedemann, and Franceschetti-Zwahlen-Klein.
Little is known about the natural history of Roberts syndrome due to its wide clinical variability. The prognosis of the disease depends on the malformations, as the severity of the malformations correlates with survival. The cause of death for most fatalities of Roberts syndrome have not been reported; however, five deaths were reportedly due to infection.
The following are observations that have been made in individuals with cytogenetic findings of PCS/HR or ESCO2 mutations:
- The symptom of prenatal growth retardation is the most common finding and can be moderate to severe. Postnatal growth retardation can also be moderate to severe and correlates with the degree of severity of limb and craniofacial malformations.
- In limb malformations, the upper limbs are typically more severely affected than the lower limbs. There have been many cases of only upper limb malformation.
- In hand malformations, the thumb is most often affected, followed by the fifth finger (the little finger). In severe cases, the patient may only have three fingers and in rare cases only one.
- In craniofacial malformations, mildly affected individuals will have no abnormalities of the palate. The most severely affected will have a fronto-ethmoid-nasal-maxillary encephalocele.
- The severity of limb malformations and craniofacial malformations is correlated.
- Other abnormalities can occur in different parts of the body, including:
- Heart- atrial septal defects, ventricular septal defects, patent ductus arteriosus
- Kidneys- polycystic kidney, horseshoe kidney
- Male Genitals- enlarged penis, cryptorchidism
- Female Genitals- enlarged clitoris
- Hair- sparse, silvery-blonde scalp hair
- Cranial Nerve Paralysis, Moyamoya disease, Stroke, Intellectual disability
It can be detected by the naked eye as well as dental or skull X-Ray testing.
One of the most prominent and visible symptoms of Nevo Syndrome is the prenatal overgrowth, which continues into the infant and toddler stage. This excessive weight gain can be attributed to the low concentrations of growth hormone and insulin growth factor that are normally present to regulate weight gain. Other common symptoms associated with Nevo Syndrome are the outward wrist-drop, edema in hands and feet, undescended testes, low-set ears, hypotonia, the presence of low muscle tone in children, and long tapered fingers, and a highly arched palate.
Nager syndrome is thought to be caused by haploinsufficiency of the spliceosomal factor SF3B4.
Individuals with Stickler syndrome experience a range of signs and symptoms. Some people have no signs and symptoms; others have some or all of the features described below. In addition, each feature of this syndrome may vary from subtle to severe.
A characteristic feature of Stickler syndrome is a somewhat flattened facial appearance. This is caused by underdeveloped bones in the middle of the face, including the cheekbones and the bridge of the nose. A particular group of physical features, called the Pierre Robin sequence, is common in children with Stickler syndrome. Robin sequence includes a U-shaped or sometimes V-shaped cleft palate (an opening in the roof of the mouth) with a tongue that is too large for the space formed by the small lower jaw. Children with a cleft palate are also prone to ear infections and occasionally swallowing difficulties.
Many people with Stickler syndrome are very nearsighted (described as having high myopia) because of the shape of the eye. People with eye involvement are prone to increased pressure within the eye (ocular hypertension) which could lead to glaucoma and tearing or detachment of the light-sensitive retina of the eye (retinal detachment). Cataract may also present as an ocular complication associated with Stickler's Syndrome. The jelly-like substance within the eye (the vitreous humour) has a distinctive appearance in the types of Stickler syndrome associated with the COL2A1 and COL11A1 genes. As a result, regular appointments to a specialist ophthalmologist are advised. The type of Stickler syndrome associated with the COL11A2 gene does not affect the eye.
People with this syndrome have problems that affect things other than the eyes and ears. Arthritis, abnormality to ends of long bones, vertebrae abnormality, curvature of the spine, scoliosis, joint pain, and double jointedness are all problems that can occur in the bones and joints. Physical characteristics of people with Stickler can include flat cheeks, flat nasal bridge, small upper jaw, pronounced upper lip groove, small lower jaw, and palate abnormalities, these tend to lessen with age and normal growth and palate abnormalities can be treated with routine surgery.
Another sign of Stickler syndrome is mild to severe hearing loss that, for some people, may be progressive (see hearing loss with craniofacial syndromes). The joints of affected children and young adults may be very flexible (hypermobile). Arthritis often appears at an early age and worsens as a person gets older. Learning difficulties, not intelligence, can also occur because of hearing and sight impairments if the school is not informed and the student is not assisted within the learning environment.
Stickler syndrome is thought to be associated with an increased incidence of mitral valve prolapse of the heart, although no definitive research supports this.
The specific cause of camptodactyly remains unknown, but there are a few deficiencies that lead to the condition. A deficient lumbrical muscle controlling the flexion of the fingers, and abnormalities of the flexor and extensor tendons.
A number of congenital syndromes may also cause camptodactyly:
- Jacobsen syndrome
- Beals Syndrome
- Blau syndrome
- Freeman-Sheldon syndrome
- Cerebrohepatorenal syndrome
- Weaver syndrome
- Christian syndrome 1
- Gordon Syndrome
- Jacobs arthropathy-camptodactyly syndrome
- Lenz microphthalmia syndrome
- Marshall-Smith-Weaver syndrome
- Oculo-dento-digital syndrome
- Tel Hashomer camptodactyly syndrome
- Toriello-Carey syndrome
- Stuve-Wiedemann syndrome
- Loeys-Dietz syndrome
- Fryns syndrome
- Marfan's syndrome
- Carnio-carpo-tarsal dysthropy
Marshall-Smith Syndrome, discovered in 1971 (Marshall, Graham, Scott, Boner, & Smith), is characterized by unusual accelerated skeletal maturation (usually starting before birth) and symptoms like conspicuous physical characteristics, respiratory difficulties, and mental retardation. Cases described in the literature show a clinical variability regarding related symptoms. For instance, respiratory difficulties are ranging from absent to severe difficulties.
The classical triad of symptoms that defines 3C syndrome includes certain heart defects, hypoplasia (underdevelopment) of the cerebellum, and cranial dysmorphisms, which can take various forms. The heart defects and cranial dysmorphisms are heterogeneous in individuals who are all classed as having Ritscher-Schinzel syndrome.
Heart defects commonly seen with Ritscher-Schinzel syndrome are associated with the endocardial cushion and are the most important factor in determining a diagnosis. The mitral valve and tricuspid valve of the heart can be malformed, the atrioventricular canal can be complete instead of developing into the interatrial septum and interventricular septum, and conotruncal heart defects, which include tetralogy of Fallot, double outlet right ventricle, transposition of the great vessels, and hypoplastic left heart syndrome. Aortic stenosis and pulmonary stenosis have also been associated with 3C syndrome.
The cranial dysmorphisms associated with 3C syndrome are heterogeneous and include a degree of macrocephaly, a large anterior fontanel, a particularly prominent occiput and forehead, ocular hypertelorism (wide-set eyes), slanted palpebral fissures, cleft palate, a depressed nasal bridge, cleft palate with associated bifid uvula, low-set ears, micrognathia (an abnormally small jaw), brachycephaly (flattened head), and ocular coloboma. Low-set ears are the most common cranial dysmorphism seen in 3C syndrome, and ocular coloboma is the least common of the non-concurrent symptoms (cleft lip co-occurring with cleft palate is the least common).
Cranial dysplasias associated with 3C syndrome are also reflected in the brain. Besides the cerebellar hypoplasia, cysts are commonly found in the posterior cranial fossa, the ventricles and the cisterna magna are dilated/enlarged, and Dandy-Walker malformation is present. These are reflected in the developmental delays typical of the disease. 75% of children with 3C syndrome have Dandy-Walker malformation and hydrocephalus.
Signs and symptoms in other body systems are also associated with 3C syndrome. In the skeletal system, ribs may be absent, and hemivertebrae, syndactyly (fusion of fingers together), and clinodactyly (curvature of the fifth finger) may be present. In the GI and genitourinary systems, anal atresia, hypospadia (misplaced urethra), and hydronephrosis may exist. Adrenal hypoplasia and growth hormone deficiency are associated endocrine consequences of Ritscher-Schinzel syndrome. Some immunodeficiency has also been reported in connection with 3C syndrome.
Many children with the disorder die as infants due to severe congenital heart disease. The proband of Ritscher and Schinzel's original study was still alive at the age of 21.
A fetus with 3C syndrome may have an umbilical cord with one umbilical artery instead of two.
First arch syndromes are congenital defects caused by a failure of neural crest cells to migrate into the first pharyngeal arch. They can produce facial anomalies. Examples of first arch syndromes include Treacher Collins syndrome and Pierre Robin syndrome.
Miller syndrome is a genetic condition also known as the Genee–Wiedemann syndrome, Wildervanck–Smith syndrome, or postaxial acrofacial dystosis. The incidence of this condition is not known, but it is considered extremely rare. It is due to a mutation in the DHODH gene. Nothing is known of its pathogenesis.
Low-set ears are ears with depressed positioning of the pinna two or more standard deviations below the population average.
It can be associated with conditions such as:
- Down's syndrome
- Turner Syndrome
- Noonan syndrome
- Patau syndrome
- DiGeorge syndrome
- Cri du chat syndrome
- Edwards syndrome
- Fragile X syndrome
It is usually bilateral, but can be unilateral in Goldenhar syndrome.
The Kocher–Debré–Semelaigne syndrome is hypothyroidism in infancy or childhood characterised by lower extremity or generalized muscular hypertrophy, myxoedema, short stature and cretinism. The absence of painful spasms and pseudomyotonia differentiates this syndrome from its adult form, which is Hoffmann syndrome.
The syndrome is named after Emil Theodor Kocher, Robert Debré and Georges Semelaigne.
Also known as Debre–Semelaigne syndrome or cretinism-muscular hypertrophy, hypothyroid myopathy, hypothyroidism-large muscle syndrome, hypothyreotic muscular hypertrophy in children, infantile myxoedema-muscular hypertrophy, myopathy-myxoedema syndrome, myxoedema-muscular hypertrophy syndrome, myxoedema-myotonic dystrophy syndrome.
Kocher-Debre-Semelaigne syndrome gives infant a Hercules appearance.
Acrocephalosyndactylia (or acrocephalosyndactyly) is the common presentation of craniosynostosis and syndactyly.
Camptodactyly is a medical condition that causes one or more fingers to be permanently bent. It involves fixed flexion deformity of the proximal interphalangeal joints. The fifth finger is always affected.
Camptodactyly can be caused by a genetic disorder. In that case, it is an autosomal dominant trait that is known for its incomplete genetic expressivity. This means that when a person has the genes for it, the condition may appear in both hands, one, or neither. A linkage scan proposed that the chromosomal locus of camptodactyly was 3q11.2-q13.12.