Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Coccidiosis is a parasitic disease of the intestinal tract of animals caused by coccidian protozoa. The disease spreads from one animal to another by contact with infected feces or ingestion of infected tissue. Diarrhea, which may become bloody in severe cases, is the primary symptom. Most animals infected with coccidia are asymptomatic, but young or immunocompromised animals may suffer severe symptoms and death.
While coccidia can infect a wide variety of animals, including humans, birds, and livestock, they are usually species-specific. One well-known exception is toxoplasmosis caused by "Toxoplasma gondii".
Humans may first encounter coccidia when they acquire a puppy or kitten that is infected. Other than "T. gondii", the infectious organisms are canine and feline-specific and are not contagious to humans, unlike the zoonotic diseases.
Puppies are frequently infected with coccidia from the feces of their mother, and are more likely to develop coccidiosis due to their undeveloped immune systems. Stress can trigger symptoms in susceptible animals.
Symptoms in young dogs include diarrhea with mucus and blood, poor appetite, vomiting, and dehydration. Untreated the disease can be fatal.
Treatment is routine and effective. Diagnosis is made by low-powered microscopic examination of the feces, which is generally replete with oocysts. Readily available drugs eliminate the protozoa or reduce them enough that the animal's immune system can clear the infection. Permanent damage to the gastrointestinal system is rare, and a dog will usually suffer no long-lasting negative effects.
Protozoan infections are parasitic diseases caused by organisms formerly classified in the Kingdom Protozoa. They include organisms classified in Amoebozoa, Excavata, and Chromalveolata.
Examples include "Entamoeba histolytica", "Plasmodium" (some of which cause malaria), and "Giardia lamblia". "Trypanosoma brucei", transmitted by the tsetse fly and the cause of African sleeping sickness, is another example.
The species traditionally collectively termed "protozoa" are not closely related to each other, and have only superficial similarities (eukaryotic, unicellular, motile, though with exceptions). The terms "protozoa" (and protist) are usually discouraged in the modern biosciences. However, this terminology is still encountered in medicine. This is partially because of the conservative character of medical classification, and partially due to the necessity of making identifications of organisms based upon appearances and not upon DNA.
Protozoan infections in animals may be caused by organisms in the sub-class Coccidia (disease: Coccidiosis) and species in the genus "Besnoitia" (disease: Besnoitiosis).
Several pathogenic protozoans appear to be capable of sexual processes involving meiosis (or at least a modified form of meiosis). Included among these protozoans are "Plasmodium falciparum" (malaria), "Toxoplasma gondii" (toxoplasmosis), "Leishmania" species (leishmaniases), "Trypanosoma brucei" (African sleeping sickness), "Trypanosoma cruzi" (Chagas disease) and "Giardia intestinalis" (giardiasis).
Physiological reactions to "Toxocara" infection depend on the host’s immune response and the parasitic load. Most cases of "Toxocara" infection are asymptomatic, especially in adults. When symptoms do occur, they are the result of migration of second stage "Toxocara" larvae through the body.
Covert toxocariasis is the least serious of the three syndromes and is believed to be due to chronic exposure. Signs and symptoms of covert toxocariasis are coughing, fever, abdominal pain, headaches, and changes in behavior and ability to sleep. Upon medical examination, wheezing, hepatomegaly, and lymphadenitis are often noted.
High parasitic loads or repeated infection can lead to visceral larva migrans (VLM). VLM is primarily diagnosed in young children, because they are more prone to exposure and ingestion of infective eggs. "Toxocara" infection commonly resolves itself within weeks, but chronic eosinophilia may result. In VLM, larvae migration incites inflammation of internal organs and sometimes the central nervous system. Symptoms depend on the organ(s) affected. Patients can present with pallor, fatigue, weight loss, anorexia, fever, headache, rash, cough, asthma, chest tightness, increased irritability, abdominal pain, nausea, and vomiting. Sometimes the subcutaneous migration tracks of the larvae can be seen. Patients are commonly diagnosed with pneumonia, bronchospasms, chronic pulmonary inflammation, hypereosinophilia, hepatomegaly, hypergammaglobulinaemia (IgM, IgG, and IgE classes), leucocytosis, and elevated anti-A and –B isohaemagglutinins. Severe cases have occurred in people who are hypersensitive to allergens; in rare cases, epilepsy, inflammation of the heart, pleural effusion, respiratory failure, and death have resulted from VLM.
Ocular larva migrans (OLM) is rare compared with VLM. A light "Toxocara" burden is thought to induce a low immune response, allowing a larva to enter the host’s eye. Although there have been cases of concurrent OLM and VLM, these are extremely exceptional. OLM often occurs in just one eye and from a single larva migrating into and encysting within the orbit. Loss of vision occurs over days or weeks. Other signs and symptoms are red eye, white pupil, fixed pupil, retinal fibrosis, retinal detachment, inflammation of the eye tissues, retinal granulomas, and strabismus. Ocular granulomas resulting from OLM are frequently misdiagnosed as retinoblastomas. "Toxocara" damage in the eye is permanent and can result in blindness.
A case study published in 2008 supported the hypothesis that eosinophilic cellulitis may also be caused by infection with "Toxocara". In this study, the adult patient presented with eosinophilic cellulitis, hepatosplenomegaly, anemia, and a positive ELISA for "T. cani"s.
The incubation period for "Toxocara canis" and "cati" eggs depends on temperature and humidity. "T. canis" females, specifically, are capable of producing up to 200,000 eggs a day that require 2-6 weeks minimum up to a couple months before full development into the infectious stage. Under ideal summer conditions, eggs can mature to the infective stage after two weeks outside of a host. Provided sufficient oxygen and moisture availability, "Toxocara" eggs can remain infectious for years, as their resistant outer shell enables the protection from most environmental threats.However, as identified in a case study presented within the journal of helminthology, the second stage of larvae development poses strict vulnerabilities to certain environmental elements. High temperatures and low moisture levels will quickly degrade the larvae during this stage of growth.
In humans, this parasitic infection causes a variety of symptoms, depending on where the cyst occurs. The tapeworm larvae group together to form fluid filled cysts in various body tissues. These cysts start out small, but as the larvae grow, the cyst can reach the size of an egg. The cysts of "T. multiceps" are usually between 2 and 6 cm in diameter and are most commonly found in the CNS and can contain anywhere from a few to over a hundred worm larvae within them. "T serialis" and "T. glomerata" cysts present in the CNS, muscles, or subcutaneous tissue, and "T. brauni" cysts occupy these same areas but occur in the eye more frequently than the other three species.
When the cyst occurs in the brain, as it often does, the infected individual may experience headaches, seizures, vomiting, paralysis affecting one side of the body (hemiplegia), paralysis involving one limb (monoplegia), and loss of ability to coordinate muscles and muscle movements. Many of these symptoms are due to the buildup of inter-cranial pressure from the growing cyst or from the cyst pressing on other parts of brain.
When the cyst occurs in the spinal cord, it can cause severe pain and inflammation, and loss of feeling in some nerves.
When the cyst occurs in the eyes, it causes decreased vision and headaches.
In the muscular and subcutaneous tissues, the cyst causes disfiguring nodules that can protrude out of the body. These nodules can be painful, uncomfortable, and can cause loss of muscle function.
The several forms of the infection are:
- Skin/subcutaneous tissue disease is a septic phlegmon that develops classically in the hand and forearm after a cat bite. Inflammatory signs are very rapid to develop; in 1 or 2 hours, edema, severe pain, and serosanguineous exudate appear. Fever, moderate or very high, can be seen, along with vomiting, headache, and diarrhea. Lymphangitis is common. Complications are possible, in the form of septic arthritis, osteitis, or evolution to chronicity.
- Sepsis is very rare, but can be as fulminant as septicaemic plague, with high fever, rigors, and vomiting, followed by shock and coagulopathy.
- Pneumonia disease is also rare and appears in patients with some chronic pulmonary pathology. It usually presents as bilateral consolidating pneumonia, sometimes very severe.
- Zoonosis, pasteurellosis can be transmitted to humans through cats.
Other locations are possible, such as septic arthritis, meningitis, and acute endocarditis, but are very rare.
They are treated with antiprotozoal agents. Recent papers have also proposed the use of viruses to treat infections caused by protozoa.
Diagnosis is made with isolation of "Pasteurella multocida" in a normally sterile site (blood, pus, or cerebrospinal fluid).
Coenurosis is a parasitic infection that results when humans ingest the eggs of dog tapeworm species "Taenia multiceps", "T. serialis, T. brauni," or "T. glomerata."
It is important to distinguish that there is a very significant difference between intestinal human tapeworm infection and human coenurosis. Humans are the definitive hosts for some tapeworm species, the most common being "T. saginata" and "T. solium" (beef and pork tapeworms). This means that these species can develop into full grown, reproductively capable adult worms within the human body. People infected with these species have a tapeworm infection. In contrast, the four species that cause human coenurosis can only grow into mature, reproductively capable worms inside their definitive hosts, canids such as dogs, wolves, foxes and coyotes. Humans who ingest eggs from any of these four species of "Taenia" become intermediate hosts, or places where the eggs can mature into larvae but not into adult worms. When humans ingest these eggs, the eggs develop into tapeworm larvae that group within cysts known as coenuri, which can be seen in the central nervous system, muscles, and subcutaneous tissues of infected humans. People with coenurosis do not develop a tapeworm infection because the larvae of coenurosis-causing parasites cannot develop into worms inside of humans.
Tyzzer’s disease is an acute epizootic bacterial disease found in rodents, rabbits, dogs, cats, birds, pandas, deer, foals, cattle, and other mammals including gerbils. It is caused by the spore-forming bacterium "Clostridium piliforme", formerly known as "Bacillus piliformis". It is an infectious disease characterized by necrotic lesions on the liver, is usually fatal, and is present worldwide. Animals with the disease become infected through oral ingestion of the bacterial spores and usually die within a matter of days. Animals most commonly affected include young, stressed animals in laboratory environments, such as immature rodents and rabbits. Most commonly affected wild animals include muskrats "(Ondatra zibethicus)" and occasionally cottontail rabbits "(Lepus sylvaticus)". Even today, much remains unknown about Tyzzer’s disease, including how and why it occurs.
Common clinical signs of Tyzzer’s Disease include watery diarrhea, depression, emaciation, and a ruffled coat. Other observed clinical signs include melena, depression, lethargy, and decreased temperature. In muskrats, this disease is characterized by extensive hemorrhaging within the lower intestine and abdomen. Due to the fast-acting nature of this disease, infected individuals often do not live long enough to exhibit symptoms. It is not uncommon for an infected animal to die within 1-10 days of disease contraction.
During necropsy, inflammation of the ileum, cecum, and colon are commonly present. Perhaps the most distinctive trait of this disease, however, is the grayish yellow necrotic lesions found on the liver of diseased animals. The number of these spots present can range from one to countless. Occasionally, lesions are discovered in the lower intestinal tract and heart as well. Even with physical signs and symptoms present, a conclusive diagnosis is dependent upon the presence of "C. piliforme" within the liver of the infected animal.
Pythiosis of the skin in dogs is rare, and appears as ulcerated lumps. Primary infection can also occur in the bones and lungs. Dogs with the gastrointestinal form of pythiosis have severe thickening of one or more portions of the gastrointestinal tract that may include the stomach, small intestine, colon, rectum, or in rare cases, even the esophagus. The resulting pathology results in anorexia, vomiting, diarrhea (sometimes bloody), and abdominal straining. Extensive weight loss may be evident.
In cats, pythioisis is almost always confined to the skin as hairless and edematous lesions. It is usually found on the limbs, perineum, and at the base of the tail. Lesions may also develop in the nasopharynx.
The only animals that have been successfully infected with the disease are rabbits which are used for "in vivo" studies of the disease.
Other animals reported to have contracted pythiosis are bears, jaguars, camels, and birds, although these have only been singular events.
Covering sickness, or dourine (French, from the Arabic "darina", meaning mangy (said of a female camel), feminine of "darin", meaning dirty), is a disease of horses and other members of the family Equidae. The disease is caused by "Trypanosoma equiperdum", which belongs to an important genus of parasitic protozoa, and is the only member of the genus that is spread through sexual intercourse. The occurrence of dourine is notifiable in the European Union under legislation from the OIE. There currently is no vaccine and although clinical signs can be treated, there is no cure.
In cattle, the main signs of paratuberculosis are diarrhea and wasting. Most cases are seen in 2- to 6-year-old animals. The initial signs can be subtle, and may be limited to weight loss, decreased milk production, or roughening of the hair coat. The diarrhea is usually thick, without blood, mucus, or epithelial debris, and may be intermittent. Several weeks after the onset of diarrhea, a soft swelling may occur under the jaw. Known as "bottle jaw" or intermandibular edema, this symptom is due to protein loss from the bloodstream into the digestive tract. Paratuberculosis is progressive; affected animals become increasingly emaciated and usually die as the result of dehydration and severe cachexia.
Signs are rarely evident until two or more years after the initial infection, which usually occurs shortly after birth. Animals are most susceptible to the infection in the first year of life. Newborns most often become infected by swallowing small amounts of infected manure from the birthing environment or udder of the mother. In addition, newborns may become infected while in the uterus or by swallowing bacteria passed in milk and colostrum. Animals exposed at an older age, or exposed to a very small dose of bacteria at a young age, are not likely to develop clinical disease until they are much older than two years.
The clinical signs are similar in other ruminants. In sheep and goats, the wool or hair is often damaged and easily shed, and diarrhea is uncommon. In deer, paratuberculosis can progress rapidly. Intestinal disease has also been reported in rabbits and nonhuman primates.
Unlike cattle and sheep, infections in deer often present with clinical illness in animals under one year of age.
"Rabbits, Hares & Lagomorphs"
Usually there do not appear to be any clinical signs. Subcutaneous cysts, warbles, may present upon larval deposition out of the body at maturation.
"Felines & Canines"
There are three forms in which Cuterebriasis may present:
- Myasis
- Cerebrospinal
- Respiratory
Myasis involves subcutaneous cyst formation due to 3rd larval instar maturation, occurring ~30 days post-entry into the body. Cysts are often found on the face, neck and trunk, but location varies with larval migration within the host. Serous discharge may be observed from these cysts, which are typically 3-5mm in diameter and include a central pore through which the larvae respire. This pore also serves as a means of exit for the larvae, which occurs anywhere between 3 and 8 weeks post-entry.
Cerebrospinal cuterebriasis results from larval migration to the brain. This is seen in cats, and is the proposed cause for feline ischemic encephalopathy and a suggestive causative agent of feline idiopathic vestibular disease. Symptoms of this type of presentation include lethargy, seizures, blindness, abnormal vocalization or gait, circling, and abnormal or no reflex responses. When affecting the central nervous system, cats are known to exhibit violent sneezing attacks that can onset weeks prior to manifestation of other clinical signs.
Respiratory disease results when larval migration occurs through the trachea, pharynx, diaphragm, or lungs. Cuterebriasis has been increasingly noted as a cause for dyspnea in felines.
Cuterebriasis is a parasitic disease affecting rodents, lagomorphs (hares, rabbits, pikas), felines and canines. The etiologic agent is the larval development of bot flies within the "Cuterebra" or "Trypoderma" genera, which occurs obligatorily in rodents and lagomorphs, respectively. Felines and canines serve as accidental hosts, but research suggests only by "Trypoderma" spp. Entrance into the body by first instar larva occurs via mucous membranes of natural orifices or open wounds as opposed to direct dermic penetration.
Paratuberculosis or Johne's disease is a contagious, chronic and sometimes fatal infection that primarily affects the small intestine of ruminants. It is caused by the bacterium "Mycobacterium avium" subspecies "paratuberculosis". Infections normally affect ruminants (mammals that have four compartments of their stomachs, of which the rumen is one), but have also been seen in a variety of nonruminant species, including rabbits, foxes, and birds. Horses, dogs, and nonhuman primates have been infected experimentally. Paratuberculosis is found worldwide, with some states in Australia (where it is usually called bovine Johne's disease or BJD) as the only areas proven to be free of the disease.
Some sources define "paratuberculosis" by the lack of "Mycobacterium tuberculosis", rather than the presence of any specific infectious agent, leaving ambiguous the appropriateness of the term to describe Buruli ulcer or Lady Windermere syndrome.
Aujeszky's disease, usually called pseudorabies in the United States, is a viral disease in swine that has been endemic in most parts of the world. It is caused by "Suid herpesvirus 1" (SuHV1). Aujeszky's disease is considered to be the most economically important viral disease of swine in areas where hog cholera has been eradicated. Other mammals, such as humans, cattle, sheep, goats, cats, dogs, and raccoons, are also susceptible. The disease is usually fatal in these animal species bar humans.
The term "pseudorabies" is found inappropriate by many people, as SuHV1 is a herpesvirus and not related to the rabies virus.
Research on SuHV1 in pigs has pioneered animal disease control with genetically modified vaccines. SuHV1 is now used in model studies of basic processes during lytic herpesvirus infection, and for unravelling molecular mechanisms of herpesvirus neurotropism.
The rabbit ear mite, "Psoroptes cuniculi", is larger than "Otodectes cynotis". It causes thick firm debris to form in the ear canal, and can eventually migrate to the skin of the outer ear and face. Symptoms include scratching and shaking of the head. Treatment includes topical selamectin, or injections of ivermectin and frequent cleanings of the rabbit's environment.
Three stages of rabies are recognized in dogs and other animals.
1. The first stage is a one- to three-day period characterized by behavioral changes and is known as the prodromal stage.
2. The second stage is the excitative stage, which lasts three to four days. It is this stage that is often known as "furious rabies" due to the tendency of the affected animal to be hyperreactive to external stimuli and bite at anything near.
3. The third stage is the paralytic stage and is caused by damage to motor neurons. Incoordination is seen due to rear limb paralysis and drooling and difficulty swallowing is caused by paralysis of facial and throat muscles. This disables the victim's ability to swallow, which causes saliva to pour from the mouth also the reason bites are the most clear way for the infection to spread is because the virus is most concentrated in the throat and cheeks causing major contamination to saliva. Death is usually caused by respiratory arrest.
Respiratory infection is usually asymptomatic in pigs more than 2 months old, but it can cause abortion, high mortality in piglets, and coughing, sneezing, fever, constipation, depression, seizures, ataxia, circling, and excess salivation in piglets and mature pigs. Mortality in piglets less than one month of age is close to 100%, but it is less than 10% in pigs between one and six months of age. Pregnant swine can reabsorb their litters or deliver mummified, stillborn, or weakened piglets. In cattle (see next section), symptoms include intense itching followed by neurological signs and death. In dogs, symptoms include intense itching, jaw and pharyngeal paralysis, howling, and death Any infected secondary host generally only lives two to three days.
Genital infection appears to have been common in a great part of the 20th century in many European countries in swine herds, where boars from boar centres were used for natural service of sows or gilts. This disease manifestation has always been asymptomatic in affected pigs, and presence of the infection on a farm was detected only because of cases in cattle showing pruritus on the hindquarters (vaginal infection, see below).
In susceptible animals other than swine, infection is usually fatal, and the affected animals most often show intense pruritus in a skin area.
Pruritus in Aujeszky's disease is considered a phantom sensation, and virus has never been found at the site of pruritus.
Host tropism is the infection specificity of certain pathogens to particular hosts and host tissues. This type of tropism explains why most pathogens are only capable of infecting a limited range of host organisms.
Researchers can classify pathogenic organisms by the range of species and cell types that they exhibit host tropism for. For instance, pathogens that are able to infect a wide range of hosts and tissues are said to be amphotropic. Ecotropic pathogens, on the other hand, are only capable of infecting a narrow range of hosts and host tissue. Knowledge of a pathogen's host specificity allows professionals in the research and medical industries to model pathogenesis and develop vaccines, medication, and preventative measures to fight against infection. Methods such as cell engineering, direct engineering and assisted evolution of host-adapted pathogens, and genome-wide genetic screens are currently being used by researchers to better understand the host range of a variety of different pathogenic organisms.
The period between infection and the first symptoms (incubation period) is typically 1–3 months in humans. Incubation periods as short as four days and longer than six years have been documented, depending on the location and severity of the contaminated wound and the amount of virus introduced. Initial signs and symptoms of rabies are often nonspecific such as fever and headache. As rabies progresses and causes inflammation of the brain and/or meninges, signs and symptoms can include slight or partial paralysis, anxiety, insomnia, confusion, agitation, abnormal behavior, paranoia, terror, and hallucinations, progressing to delirium, and coma. The person may also have hydrophobia.
Death usually occurs 2 to 10 days after first symptoms. Survival is rare once symptoms have presented, even with the administration of proper and intensive care. Jeanna Giese, who in 2004 was the first patient treated with the Milwaukee protocol, became the first person ever recorded to have survived rabies without receiving successful post-exposure prophylaxis. An intention-to-treat analysis has since found this protocol has a survival rate of about 8%.