Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Cleidocranial dysostosis is a general skeletal condition so named from the collarbone (cleido-) and cranium deformities which people with it often have.
People with the condition usually present with a painless swelling in the area of the clavicles at 2–3 years of age. Common features are:
- Clavicles (collarbones) can be partly missing leaving only the medial part of the bone. In 10% cases, they are completely missing. If the collarbones are completely missing or reduced to small vestiges, this allows hypermobility of the shoulders including ability to touch the shoulders together in front of the chest. The defect is bilateral 80% of the time. Partial collarbones may cause nerve damage symptoms and therefore have to be removed by surgery.
- The mandible is prognathic due to hypoplasia of maxilla (micrognathism) and other facial bones.
- A soft spot or larger soft area in the top of the head where the fontanelle failed to close, or the fontanelle closes late.
- Bones and joints are underdeveloped. People are shorter and their frames are smaller than their siblings who do not have the condition.
- The permanent teeth include supernumerary teeth. Unless these supernumeraries are removed they will crowd the adult teeth in what already may be an underdeveloped jaw. If so, the supernumeraries will probably need to be removed to make space for the adult teeth. Up to 13 supernumarary teeth have been observed. Teeth may also be displaced. Cementum formation may be deficient.
- Failure of eruption of permanent teeth.
- Bossing (bulging) of the forehead.
- Open skull sutures, large fontanelles.
- Hypertelorism.
- Delayed ossification of bones forming symphysis pubis, producing a widened symphysis.
- Coxa vara can occur, limiting abduction and causing Trendelenburg gait.
- Short middle fifth phalanges, sometimes causing short and wide fingers.
- Vertebral abnormalities.
- On rare occasions, brachial plexus irritation can occur.
- Scoliosis, spina bifida and syringomyelia have also been described.
Other features are: parietal bossing, basilar invagination (atlantoaxial impaction), persistent metopic suture, abnormal ear structures with hearing loss, supernumerary ribs, hemivertebrae with spondylosis, small and high scapulae, hypoplasia of illiac bones, absence of the pubic bone, short / absent fibular bones, short / absent radial bones, hypoplastic terminal phalanges.
Infants with this condition have disproportionately short arms and legs with extra folds of skin. Other signs of the disorder include a narrow chest, small ribs, underdeveloped lungs, and an enlarged head with a large forehead and prominent, wide-spaced eyes.
Thanatophoric dysplasia is a lethal skeletal dysplasia divided into two subtypes. Type I is characterized by extreme rhizomelia, bowed long bones, narrow thorax, a relatively large head, normal trunk length and absent cloverleaf skull. The spine shows platyspondyly, the cranium has a short base, and, frequently, the foramen magnum is decreased in size. The forehead is prominent, and hypertelorism and a saddle nose may be present. Hands and feet are normal, but fingers are short. Type II is characterized by short, straight long bones and cloverleaf skull.
It presents with typical telephone handled shaped long bones and a H-shaped vertebrae.
It may be associated with:
- 8th cranial nerve lesion
- Optic nerve compression
- Mental retardation
- Syndactyly
Carpenter syndrome presents several features:
- Tower-shaped skull (craniosynostosis)
- Additional or fused digits (fingers and toes)
- Obesity
- Reduced height
Intellectual disability is also common with the disorder, although some patients may have average intellectual capacity.
Many of the characteristic facial features (among other) of Jackson–Weiss syndrome result from the premature fusion of the skull bones. The following are some of the more common, such as:
- Preaxial foot polydactyl
- Tarsal synostosis
- Frontal bossing
- Proptosis
Common relevant features of acrocephalosyndactyly are a high-arched palate, pseudomandibular prognathism (appearing as mandibular prognathism), a narrow palate, and crowding of the teeth.
The cranial malformations are the most apparent effects of acrocephalosyndactyly. Craniosynostosis occurs, in which the cranial sutures close too soon, though the child's brain is still growing and expanding. Brachycephaly is the common pattern of growth, where the coronal sutures close prematurely, preventing the skull from expanding frontward or backward, and causing the brain to expand the skull to the sides and upwards. This results in another common characteristic, a high, prominent forehead with a flat back of the skull. Due to the premature closing of the coronal sutures, increased cranial pressure can develop, leading to mental deficiency. A flat or concave face may develop as a result of deficient growth in the mid-facial bones, leading to a conditir prognathism. Other features of acrocephalosyndactyly may include shallow bony orbits and broadly spaced eyes. Low-set ears are also a typical characteristic of branchial arch syndromes.
As a result of the changes to the developing embryo, the symptoms are very pronounced features, especially in the face. Low-set ears are a typical characteristic, as in all of the disorders which are called branchial arch syndromes. The reason for this abnormality is that ears on a foetus are much lower than those on an adult. During normal development, the ears "travel" upward on the head; however, in Crouzon patients, this pattern of development is disrupted. Ear canal malformations are extremely common, generally resulting in some hearing loss. In particularly severe cases, Ménière's disease may occur.
The most notable characteristic of Crouzon syndrome is craniosynostosis, as described above; however it usually presents as brachycephaly resulting in the appearance of a short and broad head. Exophthalmos (bulging eyes due to shallow eye sockets after early fusion of surrounding bones), hypertelorism (greater than normal distance between the eyes), and psittichorhina (beak-like nose) are also symptoms. Additionally, external strabismus is a common occurrence, which can be thought of as opposite from the eye position found in Down syndrome. Lastly, hypoplastic maxilla (insufficient growth of the midface) results in relative mandibular prognathism (chin appears to protrude despite normal growth of mandible) and gives the effect of the patient having a concave face. Crouzon syndrome is also associated with patent ductus arteriosus (PDA) and aortic coarctation.
For reasons that are not entirely clear, most Crouzon patients also have noticeably shorter humerus and femur bones relative to the rest of their bodies than members of the general population. A small percentage of Crouzon patients also have what is called "Type II" Crouzon syndrome, distinguished by partial syndactyly.
Carpenter Syndrome belongs to a group of rare genetic disorders known as acrocephalopolysyndactyly, abbreviated ACPS (RN, 2007). There were originally five types of ACPS, but this number has been decreased because they have been found to be closely related to one another or to other disorders (Paul A. Johnson, 2002).
The most common physical manifestation of Carpenter Syndrome is early fusing of the fibrous cranial sutures which results in an abnormally pointed head. The fusion of the skull bones is evident from birth (National Organization for Rare Disorders, Inc., 2008). Babies’ mobile cranial bones form a cone shape as the pass through the birth canal and soon thereafter return to a normal shape; however, a baby affected by carpenter syndrome maintains a cone shaped head.
A baby affected by Carpenter Syndrome will also display malformations of the face. An individual affected by the syndrome may have broad cheeks, a flat nasal bridge, and a wide upturned nose with abnormally large nasal openings. Their ears will most commonly be low, unevenly set, and malformed in structure. In addition to these facial abnormalities, individuals also have an underdeveloped maxilla and/ or mandible with a highly arched and narrow palate which makes speech a very difficult skill to master. Teeth are usually very late to come in and will be undersized and spaced far apart (Carpenter Syndrome-description).
Other physical abnormalities often associated with Carpenter Syndrome include extra digits. Extra toes are more commonly seen than fingers. Often both the toes and fingers are webbed, a process that occurs before the sixth week gestational period. Often their digits will be abnormally short, and the fingers are commonly missing an interphalangeal joint. Roughly half of the babies born with Carpenter Syndrome have some type of heart defect, and seventy five percent of individuals with this disease will experience some degree of development delay due to mild mental retardation (Carpenter Syndrome-description).
Many of the characteristic facial features result from the premature fusion of the skull bones (craniosynostosis). The head is unable to grow normally, which leads to a high prominent forehead (turribrachycephaly), and eyes that appear to bulge (proptosis) and are wide-set (hypertelorism). In addition, there is an underdeveloped upper jaw (maxillary hypoplasia). About 50 percent of children with Pfeiffer syndrome have hearing loss, and dental problems are also common.
In people with Pfeiffer syndrome, the thumbs and first (big) toes are wide and bend away from the other digits (pollex varus and hallux varus). Unusually short fingers and toes (brachydactyly) are also common, and there may be some webbing or fusion between the digits (syndactyly).
The most common and defining features of BGS are craniosynostosis and radial ray deficiency. The observations of these features allow for a diagnosis of BGS to be made, as these symptoms characterize the syndrome. Craniosynostosis involves the pre-mature fusion of bones in the skull. The coronal craniosynostosis that is commonly seen in patients with BGS results in the fusion of the skull along the coronal suture. Because of the changes in how the bones of the skull are connected together, people with BGS will have an abnormally shaped head, known as brachycephaly. Features commonly seen in those with coronal craniosynostosis are bulging eyes, shallow eye pockets, and a prominent forehead. Radial ray deficiency is another clinical characteristic of those with BGS, and results in the under-development (hypoplasia) or the absence (aplasia) of the bones in the arms and the hands. These bones include the radius, the carpal bones associated with the radius and the thumb. Oligodactyly can also result from radial ray deficiency, meaning that someone with BGS may have fewer than five fingers. Radial ray deficiency that is associated with syndromes (such as BGS) occurs bi-laterally, affecting both arms.
Some of the other clinical characteristics sometimes associated with this disorder are growth retardation and poikiloderma. Although the presentation of BGS may differ between individuals, these characteristics are often observed. People with BGS may have stunted growth, short stature and misshapen kneecaps. Poikiloderma may also be present in people with this syndrome, meaning that their skin may have regions of hyperpigmentation and hypopigmentation, or regions where the skin is missing (atrophy).
Jackson–Weiss syndrome (JWS) is a genetic disorder characterized by foot abnormalities and the premature fusion of certain bones of the skull (craniosynostosis), which prevents further growth of the skull and affects the shape of the head and face. This genetic disorder can also sometimes cause intellectual disability and crossed eyes as well, it was characterized in 1976.
Common signs of Say–Meyer syndrome are trigonocephaly as well as head and neck symptoms. The head and neck symptoms come in the form of craniosynostosis affecting the metopic suture (the dense connective tissue structure that divides the two halves of the skull in children which usually fuse together by the age of six). Symptoms of Say–Meyer syndrome other than developmental delay and short stature include
- Intellectual disability.
- Low-set ears/posteriorly rotated ears
- Intellectual deficit as well as learning disability
- Intrauterine growth retardation (poor growth of a baby while it is in the mother's womb)
- Posterior fontanel
- Premature synostosis of the lambdoid suture (the fusion of the bones to the joint is premature)
- Narrow forehead
- Trigonocephaly (a frontal bone anomaly that is characterized by a premature fusion of the bones which gives the forehead a triangular shape)
- Hypotelorism or hypertelorism (reduced or increased width between the eyes)
- Craniosynostosis (when one or more seam-like junctions between two bones fuses by turning into bone. This changes the growth pattern of the skull)
- Low birth weight and height
The affected patients sometimes show a highly arched palate, clinodactyly (a defect in which toes or fingers are positioned abnormally) and ventricular septal defect (a heart defect that allows blood to pass directly from left to the right ventricle which is caused by an opening in the septum). Overall, Say–Meyer syndrome impairs growth, motor function, and mental state.
Infants with type 1 thanatophoric dysplasia also have curved thigh bones, flattened bones of the spine (platyspondyly) and shortened thoracic ribs. Note: Prenatal ultra-sound images of the ribs sometimes appear asymmetrical when in fact they are not. In certain cases, this has caused a misdiagnosis of Osteogenisis Imperfecta (OI) type II.
An unusual head shape called kleeblattschädel ("cloverleaf skull") can be seen with type 2 thanatophoric dysplasia.
Your baby's skull has seven bones. Normally, these bones don't fuse until around age 2, giving your baby's brain time to grow. Joints called cranial sutures, made of strong, fibrous tissue, hold these bones together. In the front of your baby's skull, the sutures intersect in the large soft spot (fontanel) on the top of your baby's head. Normally, the sutures remain flexible until the bones fuse. The signs of craniosynostosis may not be noticeable at birth, but they become apparent during the first few months of your baby's life. The symptoms differs from types of synostosis. First of all there is Sagittal synostosis (scaphocephaly). Premature fusion of the suture at the top of the head (sagittal suture) forces the head to grow long and narrow, rather than wide. Scaphocephaly is the most common type of craniosynostosis. The other one is called Coronal synostosis (anterior plagiocephaly). Premature fusion of a coronal suture — one of the structures that run from each ear to the sagittal suture on top of the head — may force your baby's forehead to flatten on the affected side. It may also raise the eye socket and cause a deviated nose and slanted skull. The Bicoronal synostosis (brachycephaly). When both of the coronal sutures fuse prematurely, your baby may have a flat, elevated forehead and brow.
The cranium consists of three main sections including the base of the cranium (occipital bone), the face (frontal bone), and the top (parietal bones) and sides (temporal bone) of the head. Most of the bones of the cranium are permanently set into place prior to birth. However, the temporal and parietal bones are separated by sutures, which remain open, allowing the head to slightly change in shape during childbirth. The cranial sutures eventually close within the first couple of years following birth, after the brain has finished growing.
In individuals with SCS, the coronal suture separating the frontal bones from the parietal bones, closes prematurely (craniosynostosis), occasionally even before birth. If the coronal suture closes asymmetrically or unilaterally, then the face and forehead will form unevenly, from side-to-side. People with SCS have pointy, tower-like heads because their brain is growing faster than their skull, resulting in increased intracranial pressure (ICP) and causing the top of the head and/or forehead to bulge out to allow for brain growth. The face appears uneven, particularly in the areas of the eyes and cheeks, and the forehead appears wide and tall.
Because of the abnormal forehead, there is less space for the normal facial features to develop. This results in shallow eye sockets and flat cheekbones. The shallow eye sockets make the eyes more prominent or bulging and cause the eyes to be more separated than normal (hypertelorism). The underdeveloped eye sockets, cheekbones, and lower jaw cause the face to appear flat. Furthermore, the minor downward slant of the eyes along with the drooping eyelids (ptosis) adds to the overall unevenness of the face.
Many people with this disorder have a premature fusion of skull bones along the coronal suture. Not every case has had craniosynostosis however. Other parts of the skull may be malformed as well. This will usually cause an abnormally shaped head, wide-set eyes, low set ears and flattened cheekbones in these patients. About 5 percent of affected individuals have an enlarged head (macrocephaly). There may also be associated hearing loss in 10-33% of cases and it is important for affected individuals to have hearing tests to check on the possibility of a problem. They can lose about 33-100% of hearing.
Most people with this condition have normal intellect, but developmental delay and learning disabilities are possible. The signs and symptoms of Muenke syndrome vary among affected people, and some findings overlap with those seen in other craniosynostosis syndromes. Between 6 percent and 7 percent of people with the gene mutation associated with Muenke syndrome do not have any of the characteristic features of the disorder.
McGillivray syndrome is a very rare syndrome which is also known as a Craniosynostosis. It is characterized mainly by heart defects, skull and facial abnormalities and ambiguous genitalia. The symptoms of this syndrome are ventricular septal defect, patent ductus arteriosus, small jaw, undescended testes, and webbed fingers. Beside to these symptoms there are more symptoms which is related with bone structure and misshape.
McGillivray syndrome is a birth defect in which one or more of the joints between the bones of your baby's skull close prematurely, before your baby's brain is fully formed. When your baby has craniosynostosis, his or her brain cannot grow in its natural shape and the head is misshapen. It can affect one or more of the joints in your baby's skull. In some cases, craniosynostosis is associated with an underlying brain abnormality that prevents the brain from growing properly. Treating McGillivray usually involves surgery to separate the fused bones. If there is no underlying brain abnormality, the surgery allows baby’s brain to grow and develop in adequate space.
Crouzon syndrome is an autosomal dominant genetic disorder known as a branchial arch syndrome. Specifically, this syndrome affects the first branchial (or pharyngeal) arch, which is the precursor of the maxilla and mandible. Since the branchial arches are important developmental features in a growing embryo, disturbances in their development create lasting and widespread effects.
This syndrome is named after Octave Crouzon, a French physician who first described this disorder. He noted the affected patients were a mother and her daughter, implying a genetic basis. First called "craniofacial dysostosis", the disorder was characterized by a number of clinical features. This syndrome is caused by a mutation in the fibroblast growth factor receptor II, located on chromosome 10.
Breaking down the name, "craniofacial" refers to the skull and face, and "dysostosis" refers to malformation of bone.
Now known as Crouzon syndrome, the characteristics can be described by the rudimentary meanings of its former name. What occurs is that an infant's skull and facial bones, while in development, fuse early or are unable to expand. Thus, normal bone growth cannot occur. Fusion of different sutures leads to different patterns of growth of the skull.
Examples include: trigonocephaly (fusion of the metopic suture), brachycephaly (fusion of the coronal suture), dolichocephaly (fusion of the sagittal suture), plagiocephaly (unilateral premature closure of lambdoid and coronal sutures), oxycephaly (fusion of coronal and lambdoidal sutures), Kleeblattschaedel (premature closure of all sutures).
Pfeiffer syndrome is a very rare genetic disorder characterized by the premature fusion of certain bones of the skull which affects the shape of the head and face. In addition, the syndrome includes abnormalities of the hands (such as wide and deviated thumbs) and feet (such as wide and deviated big toes). Pfeiffer syndrome affects about 1 in 100,000 births.
Frontal bossing is the development of an unusually pronounced forehead which may also be associated with a heavier than normal brow ridge. It is caused by enlargement of the frontal bone, often in conjunction with abnormal enlargement of other facial bones, skull, mandible, and bones of the hands and feet. Frontal bossing may be seen in a few rare medical syndromes such as acromegaly - a chronic medical disorder in which the anterior pituitary gland produces excess growth hormone (GH). Frontal bossing may also occur in diseases resulting in chronic anemia, where there is increased hematopoiesis and enlargement of the medullary cavities of the skull.
Oxycephaly is a type of cephalic disorder where the top of the skull is pointed or conical due to premature closure of the coronal suture plus any other suture, like the lambdoid, or it may be used to describe the premature fusion of all sutures. It should be differentiated from Crouzon syndrome. Oxycephaly is the most severe of the craniosynostoses.
Cleidocranial dysostosis (CCD), also called cleidocranial dysplasia, is a birth defect that mostly affects the bones and teeth. The collarbones are typically either poorly developed or absent, which allows the shoulders to be brought close together. The front of the skull often does not close until later, and those affected are often shorter than average. Other symptoms may include a prominent forehead, wide set eyes, abnormal teeth, and a flat nose. Symptoms vary among people; however, intelligence is typically normal.
The condition is either inherited from a person's parents or occurs as a new mutation. It is inherited in an autosomal dominant manner. It is due to a defect in the RUNX2 gene which is involved in bone formation. Diagnosis is suspected based on symptoms and X-rays with confirmation by genetic testing. Other conditions that can produce similar symptoms include mandibuloacral dysplasia, pyknodysostosis, osteogenesis imperfecta, and Hajdu-Cheney syndrome.
Treatment includes supportive measures such as a device to protect the skull and dental care. Surgery may be performed to fix certain bone abnormalities. Life expectancy is generally normal.
It affects about one per million people. Males and females are equally commonly affected. Modern descriptions of the condition date to at least 1896. The term is from "cleido" meaning collarbone, "cranial" meaning head, and "dysostosis" meaning formation of abnormal bone.
Individuals with SCS are all affected differently. Even within the same family, affected individuals have different features. The majority of individuals with SCS are moderately affected, with uneven facial features and a relatively flat face due to underdeveloped eye sockets, cheekbones, and lower jaw. In addition to the physical abnormalities, people with SCS also experience growth delays, which results in a relatively short stature. Although, most individuals with SCS are of normal intelligence, some individuals may have mild to moderate mental retardation (IQ from 50-70). More severe cases of SCS, with more serious facial deformities, occurs when multiple cranial sutures close prematurely.
Beare–Stevenson cutis gyrata syndrome is a rare genetic disorder characterized by craniosynostosis (premature fusion of certain bones of the skull, sometimes resulting in a characteristic 'cloverleaf skull'; further growth of the skull is prevented, and therefore the shape of the head and face is abnormal) and a specific skin abnormality, called cutis gyrata, characterized by a furrowed and wrinkled appearance (particularly in the face and on the palms and soles of the feet); thick, dark, velvety areas of skin (acanthosis nigricans) are sometimes found on the hands and feet and in the groin.
Additional signs and symptoms of Beare–Stevenson cutis gyrata syndrome can include a blockage of the nasal passages (choanal atresia), overgrowth of the umbilical stump, and abnormalities of the genitalia and anus. The medical complications associated with this condition are often severe and may well be life-threatening in infancy or early childhood.