Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The symptoms of CAH vary depending upon the form of CAH and the sex of the patient. Symptoms can include:
Due to inadequate mineralocorticoids:
- vomiting due to salt-wasting leading to dehydration and death
Due to excess androgens:
- functional and average sized penis in cases involving extreme virilization (but no sperm)
- ambiguous genitalia, in some females, such that it can be initially difficult to identify external genitalia as "male" or "female".
- early pubic hair and rapid growth in childhood
- precocious puberty or failure of puberty to occur (sexual infantilism: absent or delayed puberty)
- excessive facial hair, virilization, and/or menstrual irregularity in adolescence
- infertility due to anovulation
- clitoromegaly, enlarged clitoris and shallow vagina
Due to insufficient androgens and estrogens:
- Undervirilization in XY males, which can result in apparently female external genitalia
- In females, hypogonadism can cause sexual infantilism or abnormal pubertal development, infertility, and other reproductive system abnormalities
Female infants with classic CAH have ambiguous genitalia due to exposure to high concentrations of androgens in utero. CAH due to 21-hydroxylase deficiency is the most common cause of ambiguous genitalia in genotypically normal female infants (46XX). Less severely affected females may present with early pubarche. Young women may present with symptoms of polycystic ovarian syndrome (oligomenorrhea, polycystic ovaries, hirsutism).
Males with classic CAH generally have no signs of CAH at birth. Some may present with hyperpigmentation, due to co-secretion with melanocyte-stimulating hormone (MSH), and possible penile enlargement. Age of diagnosis of males with CAH varies and depends on the severity of aldosterone deficiency. Boys with salt-wasting disease present early with symptoms of hyponatremia and hypovolemia. Boys with non-salt-wasting disease present later with signs of virilization.
In rarer forms of CAH, males are under-masculinized and females generally have no signs or symptoms at birth.
Most infants born with lipoid CAH have had genitalia female enough that no disease was suspected at birth. Because the adrenal zona glomerulosa is undifferentiated and inactive before delivery, it is undamaged at birth and can make aldosterone for a while, so the eventual salt-wasting crisis develops more gradually and variably than with severe 21-hydroxylase-deficient CAH.
Most come to medical attention between 2 weeks and 3 months of age, when after a period of poor weight gain and vomiting, they were found to be dehydrated, with severe hyponatremia, hyperkalemia, and metabolic acidosis ("Addisonian or adrenal crisis"). Renin but not aldosterone is elevated. Many infants born with this condition died before a method for diagnosis was recognized for proper treatment to begin. In some cases, the condition is more mild with signs and symptoms of mineralocorticoid and glucocorticoid deficiency appearing after months or even years (late onset).
Lipoid congenital adrenal hyperplasia is an endocrine disorder that is an uncommon and potentially lethal form of congenital adrenal hyperplasia (CAH). It arises from defects in the earliest stages of steroid hormone synthesis: the transport of cholesterol into the mitochondria and the conversion of cholesterol to pregnenolone—the first step in the synthesis of all steroid hormones. Lipoid CAH causes mineralocorticoid deficiency in affected infants and children. Male infants are severely undervirilized causing their external genitalia to look feminine. The adrenals are large and filled with lipid globules derived from cholesterol.
The mineralocorticoid aspect of severe 3β-HSD CAH is similar to those of 21-hydroxylase deficiency. Like other enzymes involved in early stages of both aldosterone and cortisol synthesis, the severe form of 3β-HSD deficiency can result in life-threatening salt-wasting in early infancy. Salt-wasting is managed acutely with saline and high-dose hydrocortisone, and long-term fludrocortisone.
Mutations that result in some residual 21-hydroxylase activity cause milder disease, traditionally termed simple virilizing CAH (SVCAH). In these children the mineralocorticoid deficiency is less significant and salt-wasting does not occur. However, genital ambiguities are possible.
Mineralocorticoid manifestations of severe 11β-hydroxylase deficient CAH can be biphasic, changing from deficiency (salt-wasting) in early infancy to excess (hypertension) in childhood and adult life.
Salt-wasting in early infancy does not occur in most cases of 11β-OH CAH but can occur because of impaired production of aldosterone aggravated by inefficiency of salt conservation in early infancy. When it occurs it resembles the salt-wasting of severe 21-hydroxylase deficient CAH: poor weight gain and vomiting in the first weeks of life progress and culminate in life-threatening dehydration, hyponatremia, hyperkalemia, and metabolic acidosis in the first month.
Despite the inefficient production of aldosterone, the more characteristic mineralocorticoid effect of 11β-OH CAH is hypertension. Progressive adrenal hyperplasia due to persistent elevation of ACTH results in extreme overproduction of 11-deoxycorticosterone (DOC) by mid-childhood. DOC is a weak mineralocorticoid, but usually reaches high enough levels in this disease to cause effects of mineralocorticoid excess: salt retention, volume expansion, and hypertension.
The condition can be classified into "salt-wasting", "simple virilizing", and "non-classical" forms.
The salt-wasting and simple virilizing types are sometimes grouped together as "classical".
The sex steroid consequences of severe 3β-HSD CAH are unique among the congenital adrenal hyperplasias: it is the only form of CAH that can produce ambiguity in both sexes. As with 21-hydroxylase deficient CAH, the degree of severity can determine the magnitude of over- or undervirilization.
In an XX (genetically female) fetus, elevated amounts of DHEA can produce moderate virilization by conversion in the liver to testosterone. Virilization of genetic females is partial, often mild, and rarely raises assignment questions. The issues surrounding corrective surgery of the virilized female genitalia are the same as for moderate 21-hydroxylase deficiency but surgery is rarely considered desirable.
The extent to which mild 3β-HSD CAH can cause early appearance of pubic hair and other aspects of hyperandrogenism in later childhood or adolescence is unsettled. Early reports about 20 years ago suggesting that mild forms of 3β-HSD CAH comprised significant proportions of girls with premature pubic hair or older women with hirsutism have not been confirmed and it now appears that premature pubarche in childhood and hirsutism after adolescence are not common manifestations of 3β-HSD CAH.
Undervirilization of genetic males with 3β-HSD CAH occurs because synthesis of testosterone is impaired in both adrenals and testes. Although DHEA is elevated, it is a weak androgen and too little testosterone is produced in the liver to offset the deficiency of testicular testosterone. The degree of undervirilization is more variable, from mild to severe. Management issues are those of an undervirilized male with normal sensitivity to testosterone.
If the infant boy is only mildly undervirilized, the hypospadias can be surgically repaired, testes brought into the scrotum, and testosterone supplied at puberty.
Management decisions are more difficult for a moderately or severely undervirilized genetic male whose testes are in the abdomen and whose genitalia look at least as much female as male. Male sex can assigned and major reconstructive surgery done to close the midline of the perineum and move the testes into a constructed scrotum. Female sex can be assigned and the testes removed and vagina enlarged surgically. A recently advocated third choice would be to assign either sex and defer surgery to adolescence. Each approach carries its own disadvantages and risks. Children and their families are different enough that none of the courses is appropriate for all.
Congenital adrenal hyperplasia due to 17α-hydroxylase deficiency is an uncommon form of congenital adrenal hyperplasia resulting from a defect in the gene CYP17A1, which encodes for the enzyme 17α-hydroxylase. It produces decreased synthesis of both cortisol and sex steroids, with resulting increase in mineralocorticoid production. Thus, common symptoms include mild hypocortisolism, ambiguous genitalia in genetic males or failure of the ovaries to function at puberty in genetic females, and hypokalemic hypertension (respectively). However, partial (incomplete) deficiency is notable for having inconsistent symptoms between patients, and affected genetic (XX) females may be wholly asymptomatic except for infertility.
Because 11β-hydroxylase activity is not necessary in the production of sex steroids (androgens and estrogens), the hyperplastic adrenal cortex produces excessive amounts of DHEA, androstenedione, and especially testosterone.
These androgens produce effects that are similar to those of 21-hydroxylase deficient CAH. In the severe forms, XX (genetically female) fetuses can be markedly virilized, with ambiguous genitalia that look more male than female, though internal female organs, including ovaries and uterus develop normally.
XY fetuses (genetic males) typically show no abnormal features related to androgen excess. A megalopenis (>22 cm/8.7in) is usually present in male patients.
In milder mutations, androgen effects in both sexes appear in mid-childhood as early pubic hair, overgrowth, and accelerated bone age. Although "nonclassic" forms causing hirsutism and menstrual irregularities and appropriate steroid elevations have been reported, most have not had verifiable mutations and mild 11β-hydroxylase deficient CAH is currently considered a very rare cause of hirsutism and infertility.
All of the issues related to virilization, neonatal assignment, advantages and disadvantages of genital surgery, childhood and adult virilization, gender identity and sexual orientation are similar to those of 21-hydroxylase CAH and elaborated in more detail in Congenital adrenal hyperplasia.
Genetic XX females affected by total 17α-hydroxylase deficiency are born with normal female internal and external anatomy. At the expected time of puberty neither the adrenals nor the ovaries can produce sex steroids, so neither breast development nor pubic hair appear. Investigation of delayed puberty yields elevated gonadotropins and normal karyotype, while imaging confirms the presence of ovaries and an infantile uterus. Discovery of hypertension and hypokalemic alkalosis usually suggests the presence of one of the proximal forms of CAH, and the characteristic mineralocorticoid elevations confirm the specific diagnosis.
Milder forms of this deficiency in genetic females allow some degree of sexual development, with variable reproductive system dysregulation that can include incomplete Tanner scale development, retrograde sexual development, irregular menstruation, early menopause, or – in very mild cases – no physical symptoms beyond infertility.
Evidence suggests that only 5% of normal enzyme activity may be enough to allow at least the physical changes of female puberty, if not ovulation and fertility. In women with mild cases, elevated blood pressure and/or infertility is the presenting clinical problem.
17α-Hydroxylase deficiency in genetic males (XY) results in moderate to severe reduction of fetal testosterone production by both adrenals and testes. Undervirilization is variable and sometimes complete. The appearance of the external genitalia ranges from normal female to ambiguous to mildly underdeveloped male. The most commonly described phenotype is a small phallus, perineal hypospadias, small blind pseudovaginal pouch, and intra-abdominal or inguinal testes. Wolffian duct derivatives are hypoplastic or normal, depending on degree of testosterone deficiency. Some of those with partial virilization develop gynecomastia at puberty even though masculinization is reduced. The presence of hypertension in the majority distinguishes them from other forms of partial androgen deficiency or insensitivity. Fertility is impaired in those with more than minimal testosterone deficiency.
Adrenal Adenomas are benign tumors on the adrenal gland. In most cases the tumors display no symptoms and require no treatment. In rare cases, however, some Adrenal Adenomas may become activated, in that they begin to produce hormones in much larger quantities than what adrenal glands tend to produce leading to a number of health complications including Primary aldosteronism and Hyperandrogenism.
Hyperandrogenism, especially high levels of testosterone, can cause serious adverse effects on women’s bodies if left untreated. High testosterone levels have been seen to be associated with obesity, hypertension, amenorrhea(stop of menstrual cycles), and ovulatory dysfunction, which can lead to infertility. The more prominent signs of hyperandrogenism are hirsutism (unwanted growth of hair especially in the abdominal region and places on the back), acne after adolescence, deepening of voice, and alopecia(balding). Hyperandrogenism has also been seen to cause individuals to have a high tolerance to insulin, which can lead to type two diabetes, and dyslipidemia, such as high cholesterol. These effects have also been seen to have a large psychological impact on the individual, sometimes often leading to societal anxiety and depression, especially in adolescent girls and young women. Paired with obesity and hirsutism, it can cause the individual to have low self-esteem, and a poor view of oneself.
There are three major types of adrenal insufficiency.
- Primary adrenal insufficiency is due to impairment of the adrenal glands.
- 80% are due to an autoimmune disease called Addison's disease or autoimmune adrenalitis.
- One subtype is called idiopathic, meaning of unknown cause.
- Other cases are due to congenital adrenal hyperplasia or an adenoma (tumor) of the adrenal gland.
- Secondary adrenal insufficiency is caused by impairment of the pituitary gland or hypothalamus. Its principal causes include pituitary adenoma (which can suppress production of adrenocorticotropic hormone (ACTH) and lead to adrenal deficiency unless the endogenous hormones are replaced); and Sheehan's syndrome, which is associated with impairment of only the pituitary gland.
- Tertiary adrenal insufficiency is due to hypothalamic disease and a decrease in the release of corticotropin releasing hormone (CRH). Causes can include brain tumors and sudden withdrawal from long-term exogenous steroid use (which is the most common cause overall).
The symptoms of Addison's disease develop gradually and may become established before they are recognized. They can be nonspecific and are potentially attributable to other medical conditions.
The signs and symptoms include fatigue; lightheadedness upon standing or difficulty standing, muscle weakness, fever, weight loss, anxiety, nausea, vomiting, diarrhea, headache, sweating, changes in mood or personality, and joint and muscle pains. Some patients have cravings for salt or salty foods due to the loss of sodium through their urine. Hyperpigmentation of the skin may be seen, particularly when the patient lives in a sunny area, as well as darkening of the palmar crease, sites of friction, recent scars, the vermilion border of the lips, and genital skin. These skin changes are not encountered in secondary and tertiary hypoadrenalism.
On physical examination, these clinical signs may be noticed:
- Low blood pressure with or without orthostatic hypotension (blood pressure that decreases with standing)
- Darkening (hyperpigmentation) of the skin, including areas not exposed to the sun. Characteristic sites of darkening are skin creases (e.g., of the hands), nipple, and the inside of the cheek (buccal mucosa); also, old scars may darken. This occurs because melanocyte-stimulating hormone (MSH) and ACTH share the same precursor molecule, pro-opiomelanocortin (POMC). After production in the anterior pituitary gland, POMC gets cleaved into gamma-MSH, ACTH, and beta-lipotropin. The subunit ACTH undergoes further cleavage to produce alpha-MSH, the most important MSH for skin pigmentation. In secondary and tertiary forms of adrenal insufficiency, skin darkening does not occur, as ACTH is not overproduced.
Addison's disease is associated with the development of other autoimmune diseases, such as type I diabetes, thyroid disease (Hashimoto's thyroiditis), celiac disease, or vitiligo. Addison’s disease may be the only manifestation of undiagnosed celiac disease. Both diseases share the same genetic risk factors (HLA-DQ2 and HLA-DQ8 haplotypes).
The presence of Addison's in addition to mucocutaneous candidiasis, hypoparathyroidism, or both, is called autoimmune polyendocrine syndrome type 1. The presence of Addison's in addition to autoimmune thyroid disease, type 1 diabetes, or both, is called autoimmune polyendocrine syndrome type 2.
Signs and symptoms include: hypoglycemia, dehydration, weight loss, and disorientation. Additional signs and symptoms include weakness, tiredness, dizziness, low blood pressure that falls further when standing (orthostatic hypotension), cardiovascular collapse, muscle aches, nausea, vomiting, and diarrhea. These problems may develop gradually and insidiously. Addison's disease can present with tanning of the skin that may be patchy or even all over the body. Characteristic sites of tanning are skin creases (e.g. of the hands) and the inside of the cheek (buccal mucosa). Goitre and vitiligo may also be present. Eosinophilia may also occur.
An "Addisonian crisis" or "adrenal crisis" is a constellation of symptoms that indicates severe adrenal insufficiency. This may be the result of either previously undiagnosed Addison's disease, a disease process suddenly affecting adrenal function (such as adrenal hemorrhage), or an intercurrent problem (e.g., infection, trauma) in someone known to have Addison's disease. It is a medical emergency and potentially life-threatening situation requiring immediate emergency treatment.
Characteristic symptoms are:
- Sudden penetrating pain in the legs, lower back, or abdomen
- Severe vomiting and diarrhea, resulting in dehydration
- Low blood pressure
- Syncope (loss of consciousness and ability to stand)
- Hypoglycemia (reduced level of blood glucose)
- Confusion, psychosis, slurred speech
- Severe lethargy
- Hyponatremia (low sodium level in the blood)
- Hyperkalemia (elevated potassium level in the blood)
- Hypercalcemia (elevated calcium level in the blood)
- Convulsions
- Fever
Disorders of sex development (DSD), sometimes referred to as disorders of sex differentiation or differences of sex development, are medical conditions involving the reproductive system. More specifically, these terms refer to "congenital conditions in which development of chromosomal, gonadal, or anatomical sex is atypical."
The term has been controversial, and research has shown that affected people experience a negative impact, with the terminology impacting choice and utilization of health care providers. The World Health Organization and many medical journals still reference DSDs as intersex traits or conditions. The Council of Europe, and Inter-American Commission on Human Rights have called for a review of medical classifications that unnecessarily medicalize intersex traits.
DSDs are medical conditions involving the way the reproductive system develops from infancy (and before birth) through young adulthood. There are several types of DSDs and their effect on the external and internal reproductive organs varies greatly.
A frequently-used social and medical adjective for people with DSDs is "intersex". Parents with DSD children and clinicians involved in DSD treatment usually try to make clear distinctions between biological sex, social gender, and sexual orientation. This helps reduce confusion about the differences between being intersex, being transgender, and being gay/lesbian.
The most common DSD is congenital adrenal hyperplasia (CAH), which results in a person with female (XX) chromosomes having genitals that look somewhat masculine. In mild cases CAH results in a slightly enlarged clitoris, while in more severe cases it can be difficult to decide (just by looking) whether a baby is male or female (this is called having ambiguous genitals). Nevertheless, if they are old enough to know the difference, most children with CAH think of themselves as girls. CAH is caused by a problem with the adrenal glands and is usually treated by taking a daily medication to replace or supplement the missing adrenal hormones. (When this adrenal problem occurs in people with male (XY) chromosomes, the result is over-masculinization and premature puberty).
Another common DSD is androgen insensitivity syndrome (AIS), which means that a person with male (XY) chromosomes does not respond to testosterone in the usual way. This results in a body that to some degree has a feminine appearance. In Complete Androgen Insensitivity Syndrome (CAIS) the result is a totally feminine appearance, including typical female breast development. Consequently, most young women with CAIS are unaware of their condition until the early teen years when they fail to menstruate. In the milder form, called Partial Androgen Insensitivity Syndrome (PAIS), the genitals can vary from mostly female to almost completely male. Some people with PAIS think of themselves as girls/women, others regard themselves as boys/men, and some consider themselves mixed-gender.
One of the more unusual DSDs is 5-alpha-reductase deficiency (5ARD). It is caused by a shortage early in life of an enzyme that activates testosterone. In this condition, a person with male (XY) chromosomes has a body that appears female before puberty. After puberty begins, other testosterone-activating enzymes become available and the body soon takes on a masculine appearance, with the scrotum and penis usually reaching typical or nearly-typical size. If 5ARD is diagnosed at a young age, the child is often raised as a boy (a 1996 Brazilian study suggested that the majority of adults with this condition consider themselves men but this has been questioned in some more recent research).
In addition to CAH, CAIS, PAIS, and 5ARD there are several rarer types of DSDs, and in some cases it is not possible to make a clear diagnosis of the underlying condition.
The penis and clitoris are essentially the same organ (differing only in size, and generically called the phallus). In typical males, the urethra is located at the tip of the penis, while in typical females the urethra is located below the base of the clitoris. When the phallus is of intermediate size, it is possible also to have a urethral opening located along the shaft; this condition is known as hypospadias.
Open-minded parenting, appropriate and conservative medical intervention, and age-appropriate child involvement in the treatment plan contribute greatly to successful outcomes for the entire range of DSDs.
Adrenocortical carcinoma may present differently in children and adults. Most tumors in children are functional, and virilization is by far the most common presenting symptom, followed by Cushing's syndrome and precocious puberty. Among adults presenting with hormonal syndromes, Cushing's syndrome alone is most common, followed by mixed Cushing's and virilization (glucocorticoid and androgen overproduction). Feminization and Conn syndrome (mineralocorticoid excess) occur in less than 10% of cases. Rarely, pheochromocytoma-like hypersecretion of catecholamines has been reported in adrenocortical cancers. Non-functional tumors (about 40%, authorities vary) usually present with abdominal or flank pain, varicocele and renal vein thrombosis or they may be asymptomatic and detected incidentally.
All patients with suspected adrenocortical carcinoma should be carefully evaluated for signs and symptoms of hormonal syndromes. For Cushing's syndrome (glucocorticoid excess) these include weight gain, muscle wasting, purple lines on the abdomen, a fatty "buffalo hump" on the neck, a "moonlike" face, and thinning, fragile skin. Virilism (androgen excess) is most obvious in women, and may produce excess facial and body hair, acne, enlargement of the clitoris, deepening of the voice, coarsening of facial features, cessation of menstruation. Conn syndrome (mineralcorticoid excess) is marked by high blood pressure which can result in headache and hypokalemia (low serum potassium, which can in turn produce muscle weakness, confusion, and palpitations) low plasma renin activity, and high serum aldosterone. Feminization (estrogen excess) is most readily noted in men, and includes breast enlargement, decreased libido and impotence.
Adrenocortical carcinoma (ACC, adrenal cortical carcinoma, adrenal cortical cancer, adrenal cortex cancer, etc.) is an aggressive cancer originating in the cortex (steroid hormone-producing tissue) of the adrenal gland. Adrenocortical carcinoma is a rare tumor, with incidence of 1–2 per million population annually. Adrenocortical carcinoma has a bimodal distribution by age, with cases clustering in children under 5, and in adults 30–40 years old. Adrenocortical carcinoma is remarkable for the many hormonal syndromes which can occur in patients with steroid hormone-producing ("functional") tumors, including Cushing's syndrome, Conn syndrome, virilization, and feminization. Adrenocortical carcinoma has often invaded nearby tissues or metastasized to distant organs at the time of diagnosis, and the overall 5-year survival rate is only 20–35%. The widely used angiotensin-II-responsive steroid-producing cell line H295R was originally isolated from a tumor diagnosed as adrenocortical carcinoma.
Naegeli–Franceschetti–Jadassohn syndrome (NFJS), also known as chromatophore nevus of Naegeli and Naegeli syndrome, is a rare autosomal dominant form of ectodermal dysplasia, characterized by reticular skin pigmentation, diminished function of the sweat glands, the absence of teeth and hyperkeratosis of the palms and soles. One of the most striking features is the absence of fingerprint lines on the fingers.
Naegeli syndrome is similar to dermatopathia pigmentosa reticularis, both of which are caused by a specific defect in the keratin 14 protein.
Adrenal crisis is caused by a deficiency of cortisol resulting from Addison's disease, congenital adrenal hyperplasia (CAH), corticosteroid biosynthetic enzyme defects or pituitary disorders (such as Sheehan's syndrome, pituitary adenoma, hypopituitarism (inactive or underactive pituitary) causing failure to activate the adrenal glands.
Characteristic symptoms are:
- Sudden penetrating pain in the legs, lower back or abdomen
- Confusion, psychosis, slurred speech
- Severe lethargy
- Convulsions
- Fever
- Hyperkalemia (elevated potassium level in the blood)
- Hypercalcemia (elevated calcium level in the blood): the cause of hypercalcemia is a combination of increased calcium input into the extracellular space and reduced calcium removal by the kidney, this last caused by decreased glomerular filtration and increased tubular calcium reabsorption. Both renal factors are secondary to volume depletion and, in fact, improve rapidly during rehydration with saline infusion.
- Hypoglycemia (reduced level of blood glucose)
- Hyponatremia (low sodium level in the blood)
- Hypotension (low blood pressure)
- Hypothyroid (low T4 level)
- Severe vomiting and diarrhea, resulting in dehydration
- Syncope (loss of consciousness and ability to stand)