Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Paroxysmal sneezing in morning, especially in morning while getting out of the bed. Excessive rhinorrhea - watering discharge from the nose when patient bends forward. Nasal obstruction - bilateral nasal stuffiness alternates from one site to other; this is more marked at night, when the dependent side of nose is often blocked. Postnasal drip.
Nonallergic rhinitis cases may subsequently develop polyps, turbinate hypertrophy and sinusitis.
Rhinitis, also known as coryza, is irritation and inflammation of the mucous membrane inside the nose. Common symptoms are a stuffy nose, runny nose, sneezing, and post-nasal drip.
The inflammation is caused by viruses, bacteria, irritants or allergens. The most common kind of rhinitis is allergic rhinitis, which is usually triggered by airborne allergens such as pollen and dander. Allergic rhinitis may cause additional symptoms, such as sneezing and nasal itching, coughing, headache, fatigue, malaise, and cognitive impairment. The allergens may also affect the eyes, causing watery, reddened, or itchy eyes and puffiness around the eyes. The inflammation results in the generation of large amounts of mucus, commonly producing a runny nose, as well as a stuffy nose and post-nasal drip. In the case of allergic rhinitis, the inflammation is caused by the degranulation of mast cells in the nose. When mast cells degranulate, they release histamine and other chemicals, starting an inflammatory process that can cause symptoms outside the nose, such as fatigue and malaise. In the case of infectious rhinitis, it may occasionally lead to pneumonia, either viral or bacterial. Sneezing also occurs in infectious rhinitis to expel bacteria and viruses from the respiratory system.
Rhinitis is very common. Allergic rhinitis is more common in some countries than others; in the United States, about 10%–30% of adults are affected annually.
Rhinitis is categorized into three types (although infectious rhinitis is typically regarded as a separate clinical entity due to its transient nature): (i) infectious rhinitis includes acute and chronic bacterial infections; (ii) nonallergic (vasomotor) rhinitis includes idiopathic, hormonal, atrophic, occupational, and gustatory rhinitis, as well as rhinitis medicamentosa (drug-induced); (iii) allergic rhinitis, triggered by pollen, mold, animal dander, dust, Balsam of Peru, and other inhaled allergens.
Allergic rhinitis may be seasonal or perennial. Seasonal allergic rhinitis occurs in particular during pollen seasons. It does not usually develop until after 6 years of age. Perennial allergic rhinitis occurs throughout the year. This type of allergic rhinitis is commonly seen in younger children.
Allergic rhinitis may also be classified as Mild-Intermittent, Moderate-Severe intermittent, Mild-Persistent, and Moderate-Severe Persistent. Intermittent is when the symptoms occur 4 days/week and >4 consecutive weeks. The symptoms are considered mild with normal sleep, no impairment of daily activities, no impairment of work or school, and if symptoms are not troublesome. Severe symptoms result in sleep disturbance, impairment of daily activities, and impairment of school or work.
The characteristic presentation of RM involves nasal congestion without rhinorrhea, postnasal drip, or sneezing following several days of decongestant use. This condition typically occurs after 5–7 days of use of topical decongestants. Patients often try increasing both the dose and the frequency of nasal sprays upon the onset of RM, worsening the condition. The swelling of the nasal passages caused by rebound congestion may eventually result in permanent turbinate hyperplasia, which may block nasal breathing until surgically removed.
Rhinitis medicamentosa (or RM) is a condition of rebound nasal congestion brought on by extended use of topical decongestants (e.g., oxymetazoline, phenylephrine, xylometazoline, and naphazoline nasal sprays) and certain oral medications (e.g., sympathomimetic amines and various 2-imidazolines) that constrict blood vessels in the lining of the nose.
The various non-allergic NSAID hypersensitivity syndromes affect 0.5–1.9% of the general population, with AERD affecting about 7% of all asthmatics and about 14% of patients with severe asthma. AERD, which is more prevalent in women, usually begins in young adulthood (twenties and thirties are the most common onset times although children are afflicted with it and present a diagnostic problem in pediatrics) and may not include any other allergies. Most commonly the first symptom is rhinitis (inflammation or irritation of the nasal mucosa), which can manifest as sneezing, runny nose, or congestion. The disorder typically progresses to asthma, then nasal polyposis, with aspirin sensitivity coming last. Anosmia (lack of smell) is also common, as inflammation within the nose and sinuses likely reaches the olfactory receptors.
The respiratory reactions to aspirin vary in severity, ranging from mild nasal congestion and eye watering to lower respiratory symptoms including wheezing, coughing, an asthma attack, and in rare cases, anaphylaxis. In addition to the typical respiratory reactions, about 10% of patients with AERD manifest skin symptoms like urticaria and/or gastrointestinal symptoms such as abdominal pain or vomiting during their reactions to aspirin.
In addition to aspirin, patients usually also react to other NSAIDs such as ibuprofen, and to any medication that inhibits the cyclooxygenase-1 (COX-1) enzyme, although paracetamol (acetaminophen) in low doses is generally considered safe. NSAID that are highly selective in blocking COX-2 and do not block its closely related paralog, COX-1, such as the COX-2 inhibitors celecoxib and rofecoxib, are also regarded as safe. Nonetheless, recent studies do find that these types of drugs, e.g. acetaminophen and celecoxib, may trigger adverse reactions in these patients; caution is recommended in using any COX inhibitors. In addition to aspirin and NSAIDs, consumption of even small amounts of alcohol also produces uncomfortable respiratory reactions in many patients.
Extreme deviation of nasal septum may be accompanied by atrophic rhinitis on the wider side.
Permanent loss of smell and impairment of taste may also be a result of this disease, even after the symptoms are cured.
Allergic rhinitis, also known as hay fever, is a type of inflammation in the nose which occurs when the immune system overreacts to allergens in the air. Signs and symptoms include a runny or stuffy nose, sneezing, red, itchy, and watery eyes, and swelling around the eyes. The fluid from the nose is usually clear. Symptom onset is often within minutes following exposure and they can affect sleep, the ability to work, and the ability to concentrate at school. Those whose symptoms are due to pollen typically develop symptoms during specific times of the year. Many people with allergic rhinitis also have asthma, allergic conjunctivitis, or atopic dermatitis.
Allergic rhinitis is typically triggered by environmental allergens such as pollen, pet hair, dust, or mold. Inherited genetics and environmental exposures contribute to the development of allergies. Growing up on a farm and having multiple siblings decreases the risk. The underlying mechanism involves IgE antibodies attaching to the allergen and causing the release of inflammatory chemicals such as histamine from mast cells. Diagnosis is usually based on a medical history in combination with a skin prick test or blood tests for allergen-specific IgE antibodies. These tests, however, are sometimes falsely positive. The symptoms of allergies resemble those of the common cold; however, they often last for more than two weeks and typically do not include a fever.
Exposure to animals in early life might reduce the risk of developing allergies to them later. A number of medications may improve symptoms including nasal steroids, antihistamines such as diphenhydramine, cromolyn sodium, and leukotriene receptor antagonists such as montelukast. Medications are, however, not sufficient or are associated with side effects in many people. Exposing people to larger and larger amounts of allergen, known as allergen immunotherapy, is often effective. The allergen may be given as injections just under the skin or as a tablet under the tongue. Treatment typically lasts three to five years after which benefits may be prolonged.
Allergic rhinitis is the type of allergy that affects the greatest number of people. In Western countries, between 10–30% of people are affected in a given year. It is most common between the ages of twenty and forty. The first accurate description is from the 10th century physician Rhazes. Pollen was identified as the cause in 1859 by Charles Blackley. In 1906, the mechanism was determined by Clemens von Pirquet. The link with hay came about due to an early (and incorrect) theory that the symptoms were brought about by the smell of new hay.
The primary symptom of laryngitis is a hoarse voice. Because laryngitis can have various causes, other signs and symptoms may vary. They can include
- Dry or sore throat
- Coughing (both a causal factor and a symptom of laryngitis)
- Frequent throat clearing
- Increased saliva production
- Dysphagia (difficulty swallowing)
- Sensation of swelling in the area of the larynx (discomfort in the front of the neck)
- Globus pharyngeus (feeling like there is a lump in the throat)
- Cold or flu-like symptoms (which, like a cough, may also be a causal factor for laryngitis)
- Swollen lymph nodes in the throat, chest, or face
- Fever
- General muscle pain (myalgia)
- Shortness of breath, predominantly in children
Aside from a hoarse-sounding voice, changes to pitch and volume may occur with laryngitis. Speakers may experience a lower or higher pitch than normal, depending on whether their vocal folds are swollen or stiff. They may also have breathier voices, as more air flows through the space between the vocal folds (the glottis), quieter volume and a reduced range.
Rhinorrhea is characterized by an excess amount of mucus produced by the mucous membranes that line the nasal cavities. The membranes create mucus faster than it can be processed, causing a backup of mucus in the nasal cavities. As the cavity fills up, it blocks off the air passageway, causing difficulty breathing through the nose. Air caught in nasal cavities, namely the sinus cavities, cannot be released and the resulting pressure may cause a headache or facial pain. If the sinus passage remains blocked, there is a chance that sinusitis may result. If the mucus backs up through the Eustachian tube, it may result in ear pain or an ear infection. Excess mucus accumulating in the throat or back of the nose may cause a post-nasal drip, resulting in a sore throat or coughing. Additional symptoms include sneezing, nosebleeds, and nasal discharge.
Samter's triad goes by several other names:
A sufferer who has not yet experienced asthma or aspirin sensitivity might be diagnosed as having:
- Non-allergic rhinitis
- Non-allergic rhinitis with eosinophilia syndrome (NARES)
Nasal congestion is the blockage of the nasal passages usually due to membranes lining the nose becoming swollen from inflamed blood vessels.
Nasal decongestants target the discomfort directly. These come as nasal sprays, inhalers, and as oral pills.
Nasal congestion has many causes and can range from a mild annoyance to a life-threatening condition. Most people prefer to breathe through the nose (historically referred to as "obligate nasal breathers"). Nasal congestion in an infant in the first few months of life can interfere with breastfeeding and cause life-threatening respiratory distress; in older children and adolescents it is often just an annoyance but can cause other difficulties.
Nasal congestion can interfere with the hearing and speech. Significant congestion may interfere with sleep, cause snoring, and can be associated with sleep apnea. In children, nasal congestion from enlarged adenoids has caused chronic sleep apnea with insufficient oxygen levels and hypoxia, as well as right-sided heart failure. The problem usually resolves after surgery to remove the adenoids and tonsils, however the problem often relapses later in life due to craniofacial alterations from chronic nasal congestion.
Nasal congestion can also cause mild facial and head pain, and a degree of discomfort, often from allergies or the common cold.
Nasal obstruction characterized by insufficient airflow through the nose can be a subjective sensation or the result of objective pathology. It is difficult to quantify by subjective complaints or clinical examinations alone, hence both clinicians and researchers depend both on concurrent subjective assessment and on objective measurement of the nasal airway. Often a doctor's assessment of a perfectly patent nasal airway might differ with a patient's complaint of an obstructed nose.
It may appear on a CT scan or MRI scan as enhancement and dilation of the duct (sialectasis).
On sialography, it may appear as segments of duct dilation and stenosis. This is sometimes termed the 'sausage link appearance'.
Rhinorrhea or rhinorrhoea is a condition where the nasal cavity is filled with a significant amount of mucus fluid. The condition, commonly known as a runny nose, occurs relatively frequently. Rhinorrhea is a common symptom of allergies (hay fever) or certain diseases, such as the common cold. It can be a side effect of crying, exposure to cold temperatures, cocaine abuse or withdrawal, such as from opioids like methadone. Treatment for rhinorrhea is not usually necessary, but there are a number of medical treatments and preventive techniques available.
The term was coined in 1866 and is a combination of the Greek terms "rhino-" ("of the nose") and "-rhoia" ("discharge" or "flow").
The signs and symptoms of allergies in a child are:
- Chronic symptoms resembling the cold that last more than a week or two.
- Cold-like symptoms that appear during the same time each year
- Repeated difficulty breathing, wheezing and breathing
- Cold-like symptoms that happen at night
- Cold-like symptoms that happen during exercise
- Chronic rashes or patches of skin that are dry, itchy, look like scales
- Cold-like symptoms that appear after eating a certain food
- Hives
- Swelling of face, arms or legs
- Gagging, coughing or wheezing, vomiting or significant abdominal pain
- Itching or tingling sensations in the mouth, throat or ears
Sialodochitis (also termed ductal sialadenitis), is inflammation of the duct system of a salivary gland. This is compared to sialadenitis, which is inflammation of the gland parenchyma.
Sialodochitis may be associated with salivary duct strictures and salivary stones.
It is common in both the parotid glands and submandibular glands.
The treatment is as for sialadenitis.
Many allergens such as dust or pollen are airborne particles. In these cases, symptoms arise in areas in contact with air, such as eyes, nose, and lungs. For instance, allergic rhinitis, also known as hay fever, causes irritation of the nose, sneezing, itching, and redness of the eyes. Inhaled allergens can also lead to increased production of mucus in the lungs, shortness of breath, coughing, and wheezing.
Aside from these ambient allergens, allergic reactions can result from foods, insect stings, and reactions to medications like aspirin and antibiotics such as penicillin. Symptoms of food allergy include abdominal pain, bloating, vomiting, diarrhea, itchy skin, and swelling of the skin during hives. Food allergies rarely cause respiratory (asthmatic) reactions, or rhinitis. Insect stings, food, antibiotics, and certain medicines may produce a systemic allergic response that is also called anaphylaxis; multiple organ systems can be affected, including the digestive system, the respiratory system, and the circulatory system. Depending on the rate of severity, it can cause a skin reactions, bronchoconstriction, swelling, low blood pressure, coma, and death. This type of reaction can be triggered suddenly, or the onset can be delayed. The nature of anaphylaxis is such that the reaction can seem to be subsiding, but may recur throughout a period of time.
NSAID or nonsteroidal anti-inflammatory drug hypersensitivity reactions encompasses a broad range of allergic or allergic-like symptoms that occur within minutes to hours after ingesting aspirin or other NSAID nonsteroidal anti-inflammatory drugs. Hypersensitivity drug reactions differ from drug toxicity reactions in that drug toxicity reactions result from the pharmacological action of a drug, are dose-related, and can occur in any treated individual (see nonsteroidal anti-inflammatory drugs section on adverse reactions for NSAID-induced toxic reactions); hypersensitivity reactions are idiosyncratic reactions to a drug. Although the term NSAID was introduced to signal a comparatively low risk of adverse effects, NSAIDs do evoke a broad range of hypersensitivity syndromes. These syndromes have recently been classified by the European Academy of Allergy and Clinical Immunology Task Force on NSAIDs Hypersensitivity. The classification organizes the hypersensitivity reactions to NSAIDs into the following five categories:
- 1) NSAIDs-exacerbated respiratory disease (NERD) is an acute (immediate to several hours) exacerbation of bronchoconstriction and other symptoms of asthma (see aspirin-induced asthma) in individuals with a history of asthma and/or nasal congestion, rhinorrhea or other symptoms of rhinitis and sinusitis in individuals with a history of rhinosinusitis after ingestion of various NSAIDs, particularly those that act by inhibiting the COX-1 enzyme. NERD does not appear to be due to a true allergic reaction to NSAIDs but rather at least in part to the more direct effects of these drugs to promote the production and/or release of certain mediators of allergy. That is, inhibition of cellular COX activity deprives tissues of its anti-inflammatory product(s), particularly prostaglandin E2 while concurrently shuttling its substrate, arachidonic acid, into other metabolizing enzymes, particularly 5-lipoxygenase (ALOX5) to overproduce pro-inflammatory leukotriene and 5-Hydroxyicosatetraenoic acid metabolites and 15-lipoxygenase (ALOX15) to overproduce pro-inflammatory 15-Hydroxyicosatetraenoic acid metabolites, including eoxins; the condition is also associated with a reduction in the anti-inflammatory metabolite, lipoxin A4, and increases in certain pro-allergic chemokines such as eotaxin-2 and CCL7.
- 2) NSAIDs-exacerbated cutaneous disease (NECD) is an acute exacerbation of wheals and/or angioedema in individuals with a history of chronic urticaria. NECD also appears due to the non-allergic action of NSAIDs in inhibiting the production of COX anti-inflammatory metabolites while promoting the production 5-lipoxygenase and 15-lipoxygenase pro-inflammatory metabolites and the overproduction of certain pro-allergic chemokines, e.g. eotaxin-1, eotaxin-2, RANTES, and interleukin-5.
- 3) NSAIDs-induced urticarial disease (NEUD) is the acute development of wheals and/or angioedema in individuals with no history of chronic NSAIDs-induced urticaria or related diseases. The mechanism behind NEUD is unknown but may be due to the non-allergic action of NSAIDs in promoting the production and/or release of allergy mediators.
- 4) Single NSAID-induced urticarial/angioedema or anaphylaxis (SNIUAA) is the acute development of urticarial, angioedema, or anaphylaxis in response to a single type of NSAID and/or a single group of NSAIDs with a similar structure but not to other structurally unrelated NSAIDs in individuals with no history of underlying relevant chronic diseases. SNIUAA is due to a true IgE-mediated allergy reaction.
- 5 Single NSAID-induced delayed reactions (SNIDR) are a set of delayed onset (usually more than 24 hour) reactions to NSAIDs. SNIDR are most commonly skin reactions that may be relatively mild moderately severe such as maculopapular rash, fixed drug eruptions, photosensitivity reactions, delayed urticaria, and contact dermatitis or extremely severe such as the DRESS syndrome, acute generalized exanthematous pustulosis, the Stevens–Johnson syndrome, and toxic epidermal necrolysis (also termed Lyell's syndrome). SNIDR result from the drug-specific stimulation of CD4+ T lymphocytes and CD8+ cytotoxic T cells to elicit a delayed type hypersensitivity reaction.
PND is suggested to be a cause of extra-oral halitosis, especially when a sinus infection is also present. Acid reflux or heartburn is believed to aggravate and in some cases cause post-nasal drip. Post-nasal drip can be a cause of laryngeal inflammation and hyperresponsiveness, leading to symptoms of vocal cord dysfunction (VCD).
Dermatographic urticaria manifests as an allergic-like reaction, in general a warm red wheal (welt) to appear on the skin. It can often be confused with an allergic reaction to the object causing the scratch, when in fact it is the act of being scratched that causes a wheal to appear. These wheals are a subset of [urticaria] (hives) that appear within minutes, in some cases accompanied by itching. The first outbreak of urticaria can lead to others on body parts not directly stimulated, scraped, or scratched. In a normal case, the swelling will decrease with no treatment within 15–30 minutes, but, in extreme cases, itchy red welts may last anywhere from a few hours to days.