Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms of M2DS include infantile hypotonia and failure to thrive, delayed psychomotor development, impaired speech, abnormal or absent gait, epilepsy, spasticity, gastrointestinal motility problems, recurrent infections, and genitourinary abnormalities. Many of those affected by M2DS also fit diagnostic criteria for autism. M2DS can be associated with syndromic facies, namely an abnormally flat back of the head, underdevelopment of the midface, ear anomalies, deep-set eyes, prominent chin, pointed nose, and a flat nasal bridge.
The most common symptoms are intellectual disability and recurrent seizures developing in infancy or early childhood. Typically the seizures are resistant to treatment with anti-epileptic drugs. Other symptoms may include:
- Microcephaly
- Lymphedema
- Facial abnormalities
- Immune deficiencies
- Abnormalities of retina
- Slow growth
- Short stature
Recognised symptoms up till now are:
- Autism or autistic behaviors
- ADHD
- Learning disability
- Large head
- Dysmorphic facial appearance - mild
- Prominent forehead
- Wide-set eyes (hypertelorism)
- Schizophrenia
- Loose joints
- GERD
- Sleep disturbances
- Sleep Apnea
- Underdeveloped parts of brain - corpus callosum and cerebellar vermis
- Neuroblastoma
- Speech & developmental delays
- Chiari malformation of the brain
- Congenital heart defects
- Hypotonia
It is not clear whether the list of symptoms is complete. Very little information is known about the syndrome. The symptomology may be different among individuals, even in the same family.
The symptoms associated with this syndrome are variable, but common features include: low birthweight, low muscle tone at birth, poor feeding in infancy (often requiring feeding by tube for a period) and oromotor dyspraxia together with moderate developmental delays and learning disabilities but amiable behaviour. Other clinically important features include epilepsy, heart defects (atrial septal defect, ventricular septal defect) and kidney/urological anomalies. Silvery depigmentation of strands of hair have been noted in several patients. With age there is an apparent coarsening of facial features. 17q21.3 was reported simultaneously in 2006 by three independent groups, with each group reporting several patients, and is now recognised to be one of the more common recurrent microdeletion syndromes. Recently a patient with a small duplication in same segment of DNA has been described. An overview of the clinical features of the syndrome, by reviewing 22 individuals with a 17q21.31 microdeletion, estimated the disorder is present in one in every 16,000 people.
The severity of symptoms of idic(15) vary greatly between individuals. Individuals with idic(15) usually have delays in language development and motor skills such as walking or sitting up. Other traits may include low muscle tone (hypotonia), seizures (>50%), short stature, and intellectual disability. Distinctive facial features associated with idic(15), where present, are usually very subtle but may include epicanthal folds (skin folds at the inner corners of one or both eyes), broad forehead, a flattened nasal bridge, button nose, and a high arched palate (roof of the mouth). Many individuals with idic(15) display features of autism, such as problems with communication and social interactions, obsessional interests (often with interactive mechanisms like wheels, doors or switches), unpredictable sleep cycles (and a reduced need for sleep), and repetitive and stereotyped behaviors (e.g., lining up toys, playing with a toy in the same manner over and over again, hand flapping, rocking back and forth). A high pain threshold is often observed. If speech develops, it is often echolalic but some individuals do grasp some language. With a severely affected person there may be an inability to walk or talk.
Infants with Emanuel syndrome have weak muscle tone (hypotonia) and fail to gain weight and grow at the expected rate (failure to thrive). Their development is significantly delayed, and most affected individuals have severe to profound intellectual disability. Other features of Emanuel syndrome include an unusually small head (microcephaly), distinctive facial features, and a small lower jaw (micrognathia). Ear abnormalities are common, including small holes in the skin just in front of the ears (preauricular pits or sinuses). About half of all affected infants are born with an opening in the roof of the mouth (cleft palate) or a high arched palate. Males with Emanuel syndrome often have genital abnormalities. Additional signs of this condition can include heart defects and absent or unusually small (hypoplastic) kidneys; these problems can be life-threatening in infancy or childhood.
MECP2 Duplication Syndrome (M2DS) is a rare disease that is characterized by severe intellectual disability and impaired motor function. It is an X-linked genetic disorder caused by the overexpression of MeCP2 protein.
Acrocallosal syndrome (also known as ACLS) is a rare autosomal recessive syndrome characterized by corpus callosum agenesis, polydactyly, multiple dysmorphic features, motor and mental retardation, and other symptoms. The syndrome was first described by Albert Schinzel in 1979.
It is associated with "GLI3".
The three most common symptoms of Opitz G/BBB syndrome (both type I & II) are hypertelorism (exceptionally wide-spaced eyes), laryngo-tracheo-esophalgeal defects (including clefts and holes in the palate, larynx, trachea and esophagus) and hypospadias (urinary openings in males not at the tip of the penis) (Meroni, Opitz G/BBB syndrome, 2012). Abnormalities in the larynx, trachea and esophagus can cause significant difficulty breathing and/or swallowing and can result in reoccurring pneumonia and life-threatening situations. Commonly, there may be a gap between the trachea and esophagus, referred to as a laryngeal cleft; which can allow food or fluid to enter the airway and make breathing and eating a difficult task.
Genital abnormalities like a urinary opening under the penis (hypospadias), undescended testes (cryptorchidism), underdeveloped scrotum and a scrotum divided into two lobes (bifid scrotum) can all be commonplace for males with the disease.
Developmental delays of the brain and nervous system are also common in both types I and II of the disease. 50% of people with Opitz G/BBB Syndrome will experience developmental delay and mild intellectual disability. This can impact motor skills, speech and learning capabilities. Some of these instances are likened to autistic spectrum disorders. Close to half of the people with Opitz G/BBB Syndrome also have a cleft lip (hole in the lip opening) and possibly a cleft palate (hole in the roof of the mouth), as well. Less than half of the people diagnosed have heart defects, imperforate anus (obstructed anal opening), and brain defects. Of all the impairments, female carriers of X-linked Type I Opitz G/BBB Syndrome usually only have ocular hypertelorism.
17q21.31 microdeletion syndrome (Koolen De Vries syndrome) is a rare genetic disorder caused by a deletion of a segment of chromosome 17 which contains six genes. This deletion syndrome was discovered independently in 2006 by three different research groups.
Young–Madders syndrome is detectable from the fetal stage of development largely due to the distinctive consequences of holoprosencephaly, a spectrum of defects or malformations of the brain and face. Facial defects which may manifest in the eyes, nose, and upper lip, featuring cyclopia, anosmia, or in the growth of only a single central incisor, and severe overlapping of the bones of the skull. Cardiac and in some cases pulmonary deformities are present. Another signature deformity is bilateral polydactyly, and many patients also suffer from hypoplasia and genital deformities.
Chromosome 15q trisomy is an extremely rare genetic disorder, caused by a chromosomal aberration in which there is an excess copy of the long ("q") arm of human chromosome 15. The disorder is also known as Distal Duplication 15q and Partial Duplication 15q Syndrome.
The disorder is primarily characterized by growth abnormalities, which range from growth retardation to accelerated growth, intellectual disability, and distinctive malformations of the head and face. Additional abnormalities may involve malformation of the skeleton, spine and neck; fingers and/or toes; genitals (particularly in males); and, in some cases, heart problems. When accelerated growth is present, it is thought to result from the duplication of the IGF1 receptor gene.
People with the combination of Duane anomaly and radial ray malformations may have a variety of other signs and symptoms. These features include:
- Unusually shaped ears
- Hearing loss
- Heart and kidney defects
- A distinctive facial appearance
- An inward- and downward-turning foot (a clubfoot)
- Fused vertebrae.
Individuals with Dup15q syndrome are at high risk for epilepsy, autism, and intellectual disability. Motor impairments are very common in individuals with the disorder. Rates of epilepsy in children with isodicentric duplications are higher than in children with interstitial duplications. A majority of patients with either duplication type (isodicentric or interstitial) have a history of gastrointestinal problems.
A study at the University of California, Los Angeles (UCLA) of 13 children with Dup15q syndrome and 13 children with nonsyndromic ASD (i.e., autism not caused by a known genetic disorder) found that, compared to children with nonsyndromic autism, children with Dup15q had significantly lower autism severity as measured by the Autism Diagnostic Observation Schedule (ADOS) (all children in the study met diagnostic criteria for ASD). However, children with Dup15q syndrome had significantly greater motor impairment and impairment of daily living skills than children in the nonsyndromic ASD group. Within the Dup15q syndrome cohort, children with epilepsy had greater cognitive impairment.
Isodicentric 15, also called idic(15), partial tetrasomy 15q, or inverted duplication 15 (inv dup 15), is a chromosome abnormality in which a child is born with extra genetic material from chromosome 15. People with idic(15) are typically born with 47 chromosomes in their body cells, instead of the normal 46. The extra chromosome is made up of a piece of chromosome 15 that has been duplicated end-to-end like a mirror image. It is the presence of this extra genetic material that is thought to account for the symptoms seen in some people with idic(15). Individuals with idic(15) have a total of four copies of this chromosome 15 region instead of the usual two copies (1 copy each on the maternal and paternal chromosomes).
The syndrome is also often referred to by the broader term "Chromosome 15q11.2-q13.1 Duplication Syndrome", shortened to Dup15q syndrome, a name that is supported and actively promoted by the US-based support organization Dup15q Alliance. Dup15q syndrome is a broader disease term, as it includes both idic(15) and interstitial 15q11.2-q13.1, another type of duplication that causes similar clinical traits.
The extra chromosome is occasionally found in the mosaic state, i.e. some of the cells carry the marker chromosome. However, mostly because of the marker's instability and tendency to be lost during cell division (mitosis), some cells are completely normal with 46 chromosomes. Occasionally, cells may have more than one idic(15), resulting in 48 or 49 chromosomes in all or some of their cells. A similar clinical picture albeit to a milder degree could be expected in individuals that have the extra chromosome 15 material as an interstitial duplication (when the extra piece of chromosome 15 is included "within" the long arm of one of the two copies of chromosome 15, rather than as a small extra 'marker' chromosome) - often abbreviated to int dup(15); the individual thus having 46 chromosomes.
The only symptoms seen consistently in all 24 diagnosed cases are epilepsy, amelogenesis imperfecta in both primary and secondary teeth, and developmental delay. All symptoms experienced are experienced in varying degrees across each case.
There are some physical symptoms that have been associated with KTS. The most prominent symptom is amelogenesis imperfecta which gives the teeth a stained brown-yellow color. The enamel is thin, rough, and prone to crumbling. Two types of amelogenesis imperfecta (AI) have been seen in KTS patients. The first is Hypoplastic which is caused by the enamel being underdeveloped, and the second is hypo-calcified which causes the enamel to be soft and chalky. AI originated as a heterogeneous syndrome but has been observed as homogeneous in the case of KTS. Other physical symptoms that some cases have presented with include broad thumbs and toes, microcephaly, coarse hair, mildly asymmetric skull, up slanting palpebral fissures which is where the outside corners of the eyes are higher than normal, and smooth philtrum which is where the upper lip does not have a dip in the center.
KTS also presents itself with symptoms that affect the patient's ability to function. To varying degrees, patients either do not develop or have under developed language skills as well as under developed ambulance which is the ability to move around. Patients also present with global developmental delay. The severity of these symptoms is correlated with the intensity, frequency, and age of onset of the patient's epilepsy as well as their responsiveness to treatment for the epileptic attacks. In some severe cases, patients develop spastic tetraplegia which is the loss of function in all four limbs.
The extreme variability of symptoms was well represented in one family with 5 affected children. The first child was in a vegetative state and died at age 2. The second child showed psychomotor developmental delay at 1 month old, and epilepsy unresponsive to treatment at 9 months old. This child was also nonverbal and non ambulant. The third child's epilepsy was responsive to treatment and was ambulant, but she had an intellectual disability and only slight verbal abilities. The fourth child demonstrated developmental delay at age 6 months and had epileptic attacks that were only partially responsive to treatment. This child was non verbal and awkwardly ambulant. The fifth child was ambulant, but nonverbal and had epilepsy that was partially responsive to treatment. This variation has been seen across other cases of KTS as well.
Ring chromosome 14 syndrome is a very rare human chromosome abnormality. It occurs when one or both of the telomeres that mark the ends of chromosome 14 are lost allowing the now uncapped ends to fuse together forming a ring chromosome. It causes a number of serious health issues.
This is characterized by hand and arm abnormalities. The following are specific characteristics:
- Malformed or absent (aplasia) thumb
- A thumb that looks more like a finger
- Partial or complete absence of a radius
- Shortening and radial deviation of the forearms
- Triphalangeal thumb
- Duplication of the thumb (preaxial polydactyly)
Derivative 22 syndrome, or der(22), is a rare disorder associated with multiple congenital anomalies, including profound mental retardation, preauricular skin tags or pits, and conotruncal heart defects. It can occur in offspring of carriers of the constitutional chromosomal translocation t(11;22)(q23;q11), owing to a 3:1 meiotic malsegregation event resulting in partial trisomy of chromosomes 11 and 22. An unbalanced translocation between chromosomes 11 & 22 is described as Emanuel syndrome. It was characterized in 1980.
1q21.1 duplication syndrome or 1q21.1 (recurrent) microduplication is a rare aberration of chromosome 1.
In a common situation a human cell has one pair of identical chromosomes on chromosome 1. With the 1q21.1 duplication syndrome one chromosome of the pair is over complete, because a part of the sequence of the chromosome is duplicated twice or more. In 1q21.1, the '1' stands for chromosome 1, the 'q' stands for the long arm of the chromosome and '21.1' stands for the part of the long arm in which the duplication is situated.
Next to the duplication syndrome, there is also a 1q21.1 deletion syndrome. While there are two or three copies of a similar part of the DNA on a particular spot with the duplication syndrome, there is a part of the DNA missing with the deletion syndrome on the same spot. Literature refers to both the deletion and the duplication as the 1q21.1 copy-number variations (CNV).
The CNV leads to a very variable phenotype and the manifestations in individuals are quite variable. Some people who have the syndrome can function in a normal way, while others have symptoms of mental retardation and various physical anomalies.
Of those fetuses that do survive to gestation and subsequent birth, common abnormalities may include:
- Nervous system
- Intellectual disability and motor disorder
- Microcephaly
- Holoprosencephaly (failure of the forebrain to divide properly).
- Structural eye defects, including microphthalmia, Peters' anomaly, cataract, iris or fundus (coloboma), retinal dysplasia or retinal detachment, sensory nystagmus, cortical visual loss, and optic nerve hypoplasia
- Meningomyelocele (a spinal defect)
- Musculoskeletal and cutaneous
- Polydactyly (extra digits)
- Cyclopia
- Proboscis
- Congenital trigger digits
- Low-set ears
- Prominent heel
- Deformed feet known as rocker-bottom feet
- Omphalocele (abdominal defect)
- Abnormal palm pattern
- Overlapping of fingers over thumb
- Cutis aplasia (missing portion of the skin/hair)
- Cleft palate
- Urogenital
- Abnormal genitalia
- Kidney defects
- Other
- Heart defects (ventricular septal defect) (Patent Ductus Arteriosus)
- Dextrocardia
- Single umbilical artery
X-linked type I Opitz G/BBB Syndrome is diagnosed on clinical findings, but those findings can vary greatly: even within the same family. Manifestations of X-linked type I are classified in the frequent/major findings and minor findings that are found in less than 50% of individuals.
The three major findings that suggest a person has X-linked Type I Opitz G/BBB Syndrome:
1. Ocular hypertelorism (~100% cases)
2. Hypospadias (85-90% cases)
3. Laryngotracheoesophageal abnormalities (60-70%)
Minor findings found in less than 50% of individuals:
1. Developmental delay (especially intellectually)
2. Cleft lip/palate
3. Congenital heart defects
4. Imperforate (blocked) anus
5. Brain defects (especially corpus callosum)
In 1989, Hogdall used ultrasonographs to diagnose X-linked Type I Opitz G/BBB Syndrome after 19 weeks of pregnancy, by identifying hypertelorism (widely-spaced eyes) and hypospadias (irregular urinary tract openings in the penis).
There is also molecular genetic testing available to identify mutations leading to Opitz G/BBB Syndrome. X-linked Type I testing must be done on MID1, since this is the only gene that is known to cause Type I Opitz G/BBB Syndrome. Two different tests can be performed: sequence analysis and deletion/duplication analysis. In the sequence analysis a positive result would detect 15-50% of the DNA sequence mutated, while a deletion/duplication positive result would find deletion or duplication of one or more exons of the entire MID1 gene.
Several X-linked syndromes include intellectual disability as part of the presentation. These include:
- Coffin–Lowry syndrome
- MASA syndrome
- MECP2 duplication syndrome
- X-linked alpha thalassemia mental retardation syndrome
- mental retardation and microcephaly with pontine and cerebellar hypoplasia
Young–Madders syndrome, alternatively known as Pseudotrisomy 13 syndrome or holoprosencephaly–polydactyly syndrome, is a genetic disorder resulting from defective and duplicated chromosomes which result in holoprosencephaly, polydactyly, facial malformations and mental retardation, with a significant variance in the severity of symptoms being seen across known cases. Many cases often suffer with several other genetic disorders, and some have presented with hypoplasia, cleft lip, cardiac lesions and other heart defects. In one case in 1991 and another in 2000 the condition was found in siblings who were the product of incest. Many cases are diagnosed prenatally and often in siblings. Cases are almost fatal in the prenatal stage with babies being stillborn.
Though it is now thought that earlier cases were misdiagnosed as other genetic disorders with similar pathology—such as Smith–Lemli–Opitz syndrome—the earliest publicised recognition of the condition as a new, hitherto unclassified, genetic disorder was made by two British doctors in Leicester in 1987. Though they identified the condition, later named for them, they did not identify the genetic anomalies responsible but suspected a link with trisomy 13 due to the similar symptoms. With only one or two occurrences documented towards the end of the decade, a group of eight doctors published a five-patient case-study in 1991 which identified the likely chromosomal factors that caused the condition, similar to but distinct from trisomy 13, and gave it the name 'holoprosencephaly–polydactyly syndrome' based on its two most prolific presenting conditions. Later research showed that the condition could manifest in patients with normal karyotypes, without duplication of the chromosomes, and the most recent genetic research implicates problems with the gene code FBXW11 as a likely cause.
Acrocallosal syndrome (ACLS, ACS, Schinzel-Type, Hallux-duplication) is a rare, heterogeneous [3] autosomal recessive disorder first discovered by Albert Schinzel (1979) in a 3-year-old boy . To inherit ACLS, one gene copy from each parent must contain a mutation somewhere in the KIF7 gene and be passed on to the child [3]. Characteristics of this syndrome include absence or poor development of the area connecting the left and right parts of the brain, an abnormally large head, increased distance between facial features (eyes), poor motor skills, mental retardation [2], extra fingers and toes, many facial deformities [3], and cleft palate [5]. This is considered a rare disorder and is placed on the NIH Office of Rare Diseases (fewer than 200,000 cases) rare disease list [8]. Lifespan may range from stillbirth to normal expectancy depending on pregnancy complications and severity of the disorder [2,3,5]. In mild cases, the subjects have been shown to live relatively normal lives, but with developmental delays [2].