Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The symptoms and prognosis of tetrasomy 9p are highly variable. The severity of the symptoms is largely determined by the size of the isochromosome, the specific regions of chromosome 9p that are duplicated, as well as the number and type of tissues that are affected in the mosaic form.
Most patients exhibit some degree of intellectual disability, abnormal skeletal and muscular development, and abnormal facial structures. Cognitive symptoms range from slight learning disabilities to severe deficits in intellectual functioning. Due to abnormal development of the muscles, individuals often experience limited or delayed mobility. Atypical facial features are characteristic of the syndrome, including widely spaced eyes, a large nose, and unusually positioned ears. Additionally, patients often have extra skin around the neck and widely spaced nipples. A wide range of renal, digestive, cardiac, respiratory, and nervous system abnormalities have been observed.
Though rare, a few cases of phenotypically normal individuals with tetrasomy 9p have been documented.
Tetrasomy 9p (also known Tetrasomy 9p Syndrome) is a rare chromosomal disorder characterized by the presence of two extra copies of the short arm of chromosome 9 (called the p arm), in addition to the usual two. Symptoms of tetrasomy 9p vary widely among affected individuals, but typically include varying degrees of delayed growth, abnormal facial features, and intellectual disability. Symptoms of the disorder are comparable to those of trisomy 9p.
Infants with Emanuel syndrome have weak muscle tone (hypotonia) and fail to gain weight and grow at the expected rate (failure to thrive). Their development is significantly delayed, and most affected individuals have severe to profound intellectual disability. Other features of Emanuel syndrome include an unusually small head (microcephaly), distinctive facial features, and a small lower jaw (micrognathia). Ear abnormalities are common, including small holes in the skin just in front of the ears (preauricular pits or sinuses). About half of all affected infants are born with an opening in the roof of the mouth (cleft palate) or a high arched palate. Males with Emanuel syndrome often have genital abnormalities. Additional signs of this condition can include heart defects and absent or unusually small (hypoplastic) kidneys; these problems can be life-threatening in infancy or childhood.
Recognised symptoms up till now are:
- Autism or autistic behaviors
- ADHD
- Learning disability
- Large head
- Dysmorphic facial appearance - mild
- Prominent forehead
- Wide-set eyes (hypertelorism)
- Schizophrenia
- Loose joints
- GERD
- Sleep disturbances
- Sleep Apnea
- Underdeveloped parts of brain - corpus callosum and cerebellar vermis
- Neuroblastoma
- Speech & developmental delays
- Chiari malformation of the brain
- Congenital heart defects
- Hypotonia
It is not clear whether the list of symptoms is complete. Very little information is known about the syndrome. The symptomology may be different among individuals, even in the same family.
Characteristics include varying degrees of developmental disability, epilepsy, hypotonia, and both hypopigmentation and hyperpigmentation. Patients also exhibit a distinctive facial structure, characterized by high foreheads, sparse hair on the temple, a wide space between the eyes, epicanthal folds, and a flat nose. Vision and hearing impairments may occur. Patients may also exhibit congenital heart defects, gastroesophageal reflux, cataracts, and supernumerary nipples. Diaphragm problems seen in newborns can lead to death shortly after birth.
- As patients pass into adolescence, the syndrome is characterized by a coarse and flat face, macroglossia, prognathism, inverted lower lip, and psychomotor retardation with muscular hypertonia and contractures.
The severity of symptoms of idic(15) vary greatly between individuals. Individuals with idic(15) usually have delays in language development and motor skills such as walking or sitting up. Other traits may include low muscle tone (hypotonia), seizures (>50%), short stature, and intellectual disability. Distinctive facial features associated with idic(15), where present, are usually very subtle but may include epicanthal folds (skin folds at the inner corners of one or both eyes), broad forehead, a flattened nasal bridge, button nose, and a high arched palate (roof of the mouth). Many individuals with idic(15) display features of autism, such as problems with communication and social interactions, obsessional interests (often with interactive mechanisms like wheels, doors or switches), unpredictable sleep cycles (and a reduced need for sleep), and repetitive and stereotyped behaviors (e.g., lining up toys, playing with a toy in the same manner over and over again, hand flapping, rocking back and forth). A high pain threshold is often observed. If speech develops, it is often echolalic but some individuals do grasp some language. With a severely affected person there may be an inability to walk or talk.
The syndrome gets its name from the characteristic cry of affected infants, which is similar to that of a meowing kitten, due to problems with the larynx and nervous system. About 1/3 of children lose the cry by age of 2 years. Other symptoms of cri du chat syndrome may include:
- feeding problems because of difficulty in swallowing and sucking;
- low birth weight and poor growth;
- severe cognitive, speech, and motor delays;
- behavioral problems such as hyperactivity, aggression, outbursts, and repetitive movements;
- unusual facial features which may change over time;
- excessive drooling;
- small head and jaw;
- wide eyes;
- skin tags in front of eyes.
Other common findings include hypotonia, microcephaly, growth retardation, a round face with full cheeks, hypertelorism, epicanthal folds, down-slanting palpebral fissures, strabismus, flat nasal bridge, down-turned mouth, micrognathia, low-set ears, short fingers, single palmar creases, and cardiac defects (e.g., ventricular septal defect [VSD], atrial septal defect [ASD], patent ductus arteriosus [PDA], tetralogy of Fallot). Infertility is not associated with Cri du chat.
It has also been observed that people with the condition have difficulties communicating. While levels of proficiency can range from a few words to short sentences, it is often recommended by medical professionals for the child to undergo some sort of speech therapy/aid with the help of a professional.
Less frequently encountered findings include cleft lip and palate, preauricular tags and fistulas, thymic dysplasia, intestinal malrotation, megacolon, inguinal hernia, dislocated hips, cryptorchidism, hypospadias, rare renal malformations (e.g., horseshoe kidneys, renal ectopia or agenesis, hydronephrosis), clinodactyly of the fifth fingers, talipes equinovarus, pes planus, syndactyly of the second and third fingers and toes, oligosyndactyly, and hyperextensible joints. The syndrome may also include various dermatoglyphics, including transverse flexion creases, distal axial triradius, increased whorls and arches on digits, and a single palmar crease.
Late childhood and adolescence findings include significant intellectual disability, microcephaly, coarsening of facial features, prominent supraorbital ridges, deep-set eyes, hypoplastic nasal bridge, severe malocclusion, and scoliosis.
Affected females reach puberty, develop secondary sex characteristics, and menstruate at the usual time. The genital tract is usually normal in females except for a report of a bicornuate uterus. In males, testes are often small, but spermatogenesis is thought to be normal.
Symptoms of tetrasomy X are highly variable, ranging from relatively mild to severe. Symptoms are often similar to those of trisomy X. Physically, tetrasomy X patients tend to have distinctive facial features such as epicanthal folds, flat nasal bridges, upslanting palpebral fissures, midface hypoplasia, small mouths, cleft or high arched palates, delayed or absent teeth, or enamel defects. The majority have also been reported as being longer and taller. Many also show joint and muscle tone abnormalities, including hypotonia and joint looseness in the hips. Skeletal problems may also be present, including abnormal curvatures of the spine. An informal study conducted found that 10% of girls had joint laxity in the hips and 20% had joint limitations in a sample size of 20 tetrasomy and pentasomy patients.
Developmentally, people with tetrasomy X frequently show mild delays in the areas of speech development and articulation, language expression and understanding, and reading skills. Delays in motor development are also present, with walking ages ranging from 16 months to 4.5 years. About 50% of patients undergo puberty normally, whereas the other 50% experiences no puberty, partial puberty without secondary sexual characteristics, or complete puberty with menstrual irregularities and/or early menopause (possibly as early as the teens). Medical literature reports four tetra-X pregnancies, two healthy, one with trisomy 21, one stillborn with omphalocele.
In terms of internal organ systems, tetrasomy X patients may have abnormal vision, hearing, circulatory systems, kidneys, or nervous systems. Disorders of the eye include myopia, nystagmus, coloboma, microphthalmus, or optic nerve hypoplasia. In terms of hearing, patients are more prone to ear infections, sound blockage, or nerve abnormalities. Several cardiac defects have also been reported, including ventricular/atrial septal defects, atresia, hypoplastic right heart syndrome, patent ductus arteriosus, and conotruncal or valvular cardiac defects. Tetrasomy X patients also appear to be more prone to seizure activity, although there is no documented abnormalities in brain function or structure when analyzed using an EEG or MRI.
Complete trisomy 8 causes severe effects on the developing fetus and can be a cause of miscarriage.
Complete trisomy 8 is usually an early lethal condition, whereas trisomy 8 mosaicism is less severe and individuals with a low proportion of affected cells may exhibit a comparatively mild range of physical abnormalities and developmental delay. Individuals with trisomy 8 mosaicism are more likely to survive into childhood and adulthood, and exhibit a characteristic and recognizable pattern of developmental abnormalities. Common findings include retarded psychomotor development, moderate to severe mental retardation, variable growth patterns which can result in either abnormally short or tall stature, an expressionless face, and many musculoskeletal, visceral, and eye abnormalities, as well as other anomalies. A deep plantar furrow is considered to be pathognomonic of this condition, especially when seen in combination with other associated features. The type and severity of symptoms are dependent upon the location and proportion of trisomy 8 cells compared to normal cells.
1q21.1 duplication syndrome or 1q21.1 (recurrent) microduplication is a rare aberration of chromosome 1.
In a common situation a human cell has one pair of identical chromosomes on chromosome 1. With the 1q21.1 duplication syndrome one chromosome of the pair is over complete, because a part of the sequence of the chromosome is duplicated twice or more. In 1q21.1, the '1' stands for chromosome 1, the 'q' stands for the long arm of the chromosome and '21.1' stands for the part of the long arm in which the duplication is situated.
Next to the duplication syndrome, there is also a 1q21.1 deletion syndrome. While there are two or three copies of a similar part of the DNA on a particular spot with the duplication syndrome, there is a part of the DNA missing with the deletion syndrome on the same spot. Literature refers to both the deletion and the duplication as the 1q21.1 copy-number variations (CNV).
The CNV leads to a very variable phenotype and the manifestations in individuals are quite variable. Some people who have the syndrome can function in a normal way, while others have symptoms of mental retardation and various physical anomalies.
Of those fetuses that do survive to gestation and subsequent birth, common abnormalities may include:
- Nervous system
- Intellectual disability and motor disorder
- Microcephaly
- Holoprosencephaly (failure of the forebrain to divide properly).
- Structural eye defects, including microphthalmia, Peters' anomaly, cataract, iris or fundus (coloboma), retinal dysplasia or retinal detachment, sensory nystagmus, cortical visual loss, and optic nerve hypoplasia
- Meningomyelocele (a spinal defect)
- Musculoskeletal and cutaneous
- Polydactyly (extra digits)
- Cyclopia
- Proboscis
- Congenital trigger digits
- Low-set ears
- Prominent heel
- Deformed feet known as rocker-bottom feet
- Omphalocele (abdominal defect)
- Abnormal palm pattern
- Overlapping of fingers over thumb
- Cutis aplasia (missing portion of the skin/hair)
- Cleft palate
- Urogenital
- Abnormal genitalia
- Kidney defects
- Other
- Heart defects (ventricular septal defect) (Patent Ductus Arteriosus)
- Dextrocardia
- Single umbilical artery
Ring 18 causes a wide range of medical and developmental concerns. As discussed above, people with ring 18 can have features of both distal 18q- and 18p-. The features of distal 18q- and 18p- vary greatly because of the variability of the deletion size and breakpoint locations between people. Because ring 18 can involve unique deletions of both the p and q arms of the chromosome there is twice as much reason for the variability between individuals. This variation is also partly attributable to the incidence of mosaicism, which is relatively common in people with ring 18.
- Holoprosencephaly has been reported in some people with ring 18. This is due to the deletion of the TGIF gene on the short arm of chromosome 18 in some people with ring 18.Approximately 30-40% of people with ring 18 have a congenital heart anomaly. Septal defects are the most common type of defect reported in this population.
- Hypotonia is frequently seen in the ring 18 population. Seizures, though uncommon, have been reported in people with ring 18.
- In some children without “classic” holoprosencephaly, microforms of holoprosencephaly may be noted on MRI, including missing olfactory tracts and bulbs and absent or hypoplastic corpus callosum.
- Strabismus as well as nystagmus have both been reported in infants and children with ring 18.
- Hearing loss has been reported and may be related to ear canal atresia or stenosis.
- Umbilical and inguinal hernias have been reported in a small number of people with ring 18.
- Unilateral renal hypoplasia and aplasia have both been reported in individuals with ring 18. Hydronephrosis as well as pyelonephritis have also been reported in a few individuals. Cryptorchidism, hypospadias, and micropenis have been seen in males with ring 18, while females have been reported with hypoplastic labia.
- Foot abnormalities are common within the ring 18 population. Scoliosis as well as pectus excavatum have also been frequently reported.
- Several people with ring 18 have growth hormone deficiency. Hypothyroidism has also been reported in a minority of people.
- Cognitive ability varies; according to a literature review, the degree of impairment may fall anywhere between the mild and severe ends of the spectrum.
- Facial features of ring 18 include low-set, dysplastic ears, epicanthic folds, and hypertelorism. Micrognathia has also been reported.
SFMS affects the skeletal and nervous system. This syndrome's external signs would be an unusual facial appearance with their heads being slightly smaller and unusually shaped, a narrow face which is also called dolichocephaly, a large mouth with a drooping lower lip that are held open, protruding upper jaw, widely spaced upper front teeth, an underdeveloped chin, cleft palate and exotropied-slanted eyes with drooping eyelids.
Males who have SFMS have short stature and a thin body build. Also skin is lightly pigmented with multiple freckles. They may have scoliosis and chest abnormalities.
Affected boys have reduced muscle tone as infants and young children. X-rays sometimes show that their bones are underdeveloped and show characteristics of younger bones of children. Boys usually under the age of 10 have reduced muscle tone but later, patients with SFMS over the age of 10 have increased muscle tone and reflexes that cause spasticity. Their hands are short with unusual palm creases with short, shaped fingers and foot abnormalities are shortened and have fused toes and usually mild.
They have an absent of a spleen and the genitals may also show undescended testes ranging from mild to severe that leads to female gender assignment.
People who have SFMS have severe mental retardation. They are sometimes restless, behavior problems, seizures and severe delay in language development. They are self-absorbed with reduced ability to socialize with others around them. They also have psychomotor retardation which is the slowing-down of thoughts and a reduction of physical movements. They have cortical atrophy or degeneration of the brain's outer layer. Cortical atrophy is usually founded in older affected people.
Potocki–Shaffer syndrome (PSS), also known as DEFECT11 syndrome or chromosome 11p11.2 deletion syndrome, is a rare contiguous gene syndrome that results from the microdeletion of section 11.2 on the short arm of chromosome 11 (11p11.2). The syndrome has its name from Dr. Lorraine (Lori) Potocki and Dr. Lisa Shaffer who discovered the deletion on the 11th chromosome and studied the impacts.
The deletion of this combination of genes results in several distinctive congenital features, occasional defects in the heart, kidneys, and urinary tract. The disorder is associated with an enlarged parietal foramina which can cause openings in the two bones that form the top and sides of the skull. These abnormal openings form extra "soft spots" on the head, in addition to the two that newborns normally have, and unlike the usual newborn soft spots, the enlarged parietal foramina remain open throughout life. Other signs can include multiple mostly noncancerous benign bone tumours called osteochondromas (exostosis), developmental delay, vision disorders and craniofacial abnormalities. It is classified as a rare disease.
The signs and symptoms of Potocki–Shaffer syndrome vary widely. In addition to multiple osteochondromas and enlarged parietal foramina, affected individuals often have intellectual disability and delayed development of speech, motor skills (such as sitting and walking), and social skills. Many people with this condition have distinctive facial features, which can include a wide, short skull (brachycephaly); a prominent forehead; a narrow bridge of the nose; a shortened distance between the nose and upper lip (a short philtrum); and a downturned mouth. Less commonly, Potocki–Shaffer syndrome causes vision problems, additional skeletal abnormalities, and defects in the heart, kidneys, and urinary tract.
Pallister–Killian syndrome (also tetrasomy 12p mosaicism or Pallister mosaic aneuploidy syndrome) is an extremely rare genetic disorder occurring in humans. Pallister-Killian occurs due to the presence of the anomalous extra isochromosome 12p, the short arm of the twelfth chromosome. This leads to the development of tetrasomy 12p. Because not all cells have the extra isochromosome, Pallister-Killian is a mosaic condition (more readily detected in skin fibroblasts).
It was first described by Philip Pallister in 1977 and further researched by Maria Teschler-Nicola and Wolfgang Killian in 1981.
Isodicentric 15, also called idic(15), partial tetrasomy 15q, or inverted duplication 15 (inv dup 15), is a chromosome abnormality in which a child is born with extra genetic material from chromosome 15. People with idic(15) are typically born with 47 chromosomes in their body cells, instead of the normal 46. The extra chromosome is made up of a piece of chromosome 15 that has been duplicated end-to-end like a mirror image. It is the presence of this extra genetic material that is thought to account for the symptoms seen in some people with idic(15). Individuals with idic(15) have a total of four copies of this chromosome 15 region instead of the usual two copies (1 copy each on the maternal and paternal chromosomes).
The syndrome is also often referred to by the broader term "Chromosome 15q11.2-q13.1 Duplication Syndrome", shortened to Dup15q syndrome, a name that is supported and actively promoted by the US-based support organization Dup15q Alliance. Dup15q syndrome is a broader disease term, as it includes both idic(15) and interstitial 15q11.2-q13.1, another type of duplication that causes similar clinical traits.
The extra chromosome is occasionally found in the mosaic state, i.e. some of the cells carry the marker chromosome. However, mostly because of the marker's instability and tendency to be lost during cell division (mitosis), some cells are completely normal with 46 chromosomes. Occasionally, cells may have more than one idic(15), resulting in 48 or 49 chromosomes in all or some of their cells. A similar clinical picture albeit to a milder degree could be expected in individuals that have the extra chromosome 15 material as an interstitial duplication (when the extra piece of chromosome 15 is included "within" the long arm of one of the two copies of chromosome 15, rather than as a small extra 'marker' chromosome) - often abbreviated to int dup(15); the individual thus having 46 chromosomes.
The brain is abnormally smooth, with fewer folds and grooves. The face, especially in children, has distinct characteristics including a short nose with upturned nares, thickened upper lip with a thin vermilion upper border, frontal bossing, small jaw, low-set posteriorily rotated ears, sunken appearance in the middle of the face, widely spaced eyes, and hypertelorism. The forehead is prominent with bitemporal hollowing.
Characteristics that are not visual include mental retardation, pre- and postnatal growth retardation, epilepsy, and reduced lifespan.
Failure to thrive, feeding difficulties, seizures and decreased spontaneous activity are often seen. Death usually occurs in infancy and childhood.
Multiple abnormalities of the brain, kidneys, and gastrointestinal tract (the stomach and intestines) may occur.
A ring chromosome is an aberrant chromosome whose ends have fused together to form a ring. Ring chromosomes were first discovered by Lilian Vaughan Morgan in 1926. A ring chromosome is denoted by the symbol "r" in human genetics and "R" in Drosophila genetics. Ring chromosomes may form in cells following genetic damage by mutagens like radiation, but they may also arise spontaneously during development.
Symptoms vary, but usually result in dysmorphisms in the skull, nervous system, and developmental delay. Dysmorphisms in the heart, kidneys, and musculoskeletal system may also occur. An infant with complete trisomy 9 surviving 20 days after birth showed clinical features including a small face, wide fontanelle, prominent occiput, micrognathia, low set ears, upslanting palpebral fissures, high-arched palate, short sternum, overlapping fingers, limited hip abduction, rocker bottom feet, heart murmurs and also a webbed neck.
Trisomy 9p is one of the most frequent autosomal anomalies compatible with long survival rate. A study of five cases showed an association with Coffin–Siris syndrome, as well as a wide gap between the first and second toes in all five, while three had brain malformations including dilated ventricles with hypogenesis of the corpus callosum and Dandy-Walker malformation.
Derivative 22 syndrome, or der(22), is a rare disorder associated with multiple congenital anomalies, including profound mental retardation, preauricular skin tags or pits, and conotruncal heart defects. It can occur in offspring of carriers of the constitutional chromosomal translocation t(11;22)(q23;q11), owing to a 3:1 meiotic malsegregation event resulting in partial trisomy of chromosomes 11 and 22. An unbalanced translocation between chromosomes 11 & 22 is described as Emanuel syndrome. It was characterized in 1980.
Symptoms vary from case to case, and may correlate to how much of the chromosome is missing. Symptoms that are frequently observed with the condition include:
- Low birth weight
- Malformations of the head
- Eye abnormalities
- Defects of the hands and feet, polydactyly
- Reproductive abnormalities (males)
- Psychological and motor retardation
The symptoms associated with this syndrome are variable, but common features include: low birthweight, low muscle tone at birth, poor feeding in infancy (often requiring feeding by tube for a period) and oromotor dyspraxia together with moderate developmental delays and learning disabilities but amiable behaviour. Other clinically important features include epilepsy, heart defects (atrial septal defect, ventricular septal defect) and kidney/urological anomalies. Silvery depigmentation of strands of hair have been noted in several patients. With age there is an apparent coarsening of facial features. 17q21.3 was reported simultaneously in 2006 by three independent groups, with each group reporting several patients, and is now recognised to be one of the more common recurrent microdeletion syndromes. Recently a patient with a small duplication in same segment of DNA has been described. An overview of the clinical features of the syndrome, by reviewing 22 individuals with a 17q21.31 microdeletion, estimated the disorder is present in one in every 16,000 people.
Trisomy 8, also known as Warkany syndrome 2, is a human chromosomal disorder caused by having three copies (trisomy) of chromosome 8. It can appear with or without mosaicism.
Cri du chat syndrome, also known as chromosome 5p deletion syndrome, 5p− syndrome (pronounced "Five P Minus") or Lejeune’s syndrome, is a rare genetic disorder due to chromosome deletion on chromosome 5. Its name is a French term ("cat-cry" or "call of the cat") referring to the characteristic cat-like cry of affected children. It was first described by Jérôme Lejeune in 1963. The condition affects an estimated 1 in 50,000 live births across all ethnicities and is more common in females by a 4:3 ratio.
Ring 18 is a genetic condition caused by a deletion of the two tips of chromosome 18 followed by the formation of a ring-shaped chromosome. It was first reported in 1964.