Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Overgrowth syndromes in children constitute a group of rare disorders that are typical of tissue hypertrophy. Individual overgrowth syndromes have been shown to overlap with regard to clinical and radiologic features. The details of the genetic bases of these syndromes are unfolding. Any of the three embryonic tissue layers may be involved.The syndromes may manifest in localized or generalized tissue overgrowth. Latitudinal and longitudinal growth may be affected. Nevertheless, the musculoskeletal features are central to the diagnosis of some syndromes such as Proteus syndrome. The time of presentation of children with overgrowth syndromes is an important contributor to the differential diagnosis. Children with some overgrowth syndromes such as Klippel-Trenaunay-Weber syndrome can be readily detectable at birth. In contrast other overgrowth syndromes such as Proteus syndrome usually present in the postnatal period characteristically between the 2nd and 3rd year of life. In general, children with overgrowth syndromes are at increased risk of embryonic tumor development.
Examples of overgrowth syndromes include; Beckwith-Wiedemann syndrome, Proteus syndrome, Sotos syndrome, neurofibromatosis, Simpson-Golabi-Behmel syndrome, Weaver syndrome, Sturge–Weber syndrome, Macrocephaly-capillary malformation, CLOVES syndrome, fragile X syndrome and Klippel-Trenaunay-Weber syndrome.
Infants with Emanuel syndrome have weak muscle tone (hypotonia) and fail to gain weight and grow at the expected rate (failure to thrive). Their development is significantly delayed, and most affected individuals have severe to profound intellectual disability. Other features of Emanuel syndrome include an unusually small head (microcephaly), distinctive facial features, and a small lower jaw (micrognathia). Ear abnormalities are common, including small holes in the skin just in front of the ears (preauricular pits or sinuses). About half of all affected infants are born with an opening in the roof of the mouth (cleft palate) or a high arched palate. Males with Emanuel syndrome often have genital abnormalities. Additional signs of this condition can include heart defects and absent or unusually small (hypoplastic) kidneys; these problems can be life-threatening in infancy or childhood.
Beckwith–Wiedemann syndrome (; abbreviated BWS) is an overgrowth disorder usually present at birth, characterized by an increased risk of childhood cancer and certain congenital features.
Common features used to define BWS are:
- macroglossia (large tongue),
- macrosomia (above average birth weight and length),
- microcephaly
- midline abdominal wall defects (omphalocele/exomphalos, umbilical hernia, diastasis recti),
- ear creases or ear pits,
- neonatal hypoglycemia (low blood sugar after birth).
- Hepatoblastoma
Proteus syndrome causes an overgrowth of skin, bones, muscles, fatty tissues, and blood and lymphatic vessels.
Proteus syndrome is a progressive condition wherein children are usually born without any obvious deformities. Tumors of skin and bone growths appear as they age typically in early childhood. The musculoskeletal manifestations are cardinal for the diagnosis of Proteus syndrome. The severity and locations of these various asymmetrical growths vary greatly but typically the skull, one or more limbs, and soles of the feet will be affected. There is a risk of premature death in affected individuals due to deep vein thrombosis and pulmonary embolism caused by the vessel malformations that are associated with this disorder. Because of carrying excess weight and enlarged limbs, arthritis and muscle pain may also be symptoms — as is the case for Mandy Sellars, a woman who has been diagnosed with a form of Proteus syndrome (but see "Notable Cases" below). Further risks may occur due to the mass of extra tissue.
The disorder itself does not uniformly cause learning impairments: the distribution of intelligence deficits among sufferers of Proteus syndrome appears higher than that of the general population, although this is difficult to determine with statistical significance. In addition, the presence of visible deformity may have a negative effect on the social experiences of the sufferer, causing cognitive and social deficits.
Afflicted individuals are at increased risk for developing certain tumors including unilateral Ovarian cystadenomas, testicular tumors, meningiomas, and monomorphic adenomas of the parotid gland.
Hemimegalencephaly is often found to be associated.
Bannayan–Riley–Ruvalcaba syndrome is associated with enlarged head and benign mesodermal hamartomas (multiple hemangiomas, and intestinal polyps). Dysmorphy as well as delayed neuropsychomotor development can also be present. The head enlargement does not cause widening of the ventricles or raised intracranial pressure; these individuals have a higher risk of developing tumors, as the gene involved in BRRs is phosphatase and tensin homologue.
Some individuals have thyroid issues consistent with multinodular goiter, thyroid adenoma, differentiated non-medullary thyroid cancer,
most lesions are slowly growing. Visceral as well as intracranial involvement may occur in some cases, and can cause bleeding and symptomatic mechanical compression
Most children with BWS do not have all of these five features. In addition, some children with BWS have other findings including: nevus flammeus, prominent occiput, midface hypoplasia, hemihypertrophy, genitourinary anomalies (enlarged kidneys), cardiac anomalies, musculoskeletal abnormalities, and hearing loss. Also, some premature newborns with BWS do not have macroglossia until closer to their anticipated delivery date.
Given the variation among individuals with BWS and the lack of a simple diagnostic test, identifying BWS can be difficult. In an attempt to standardize the classification of BWS, DeBaun et al. have defined a child as having BWS if the child has been diagnosed by a physician as having BWS and if the child has at least two of the five common features associated with BWS (macroglossia, macrosomia, midline abdominal wall defects, ear creases/ear pits, neonatal hypoglycemia). Another definition presented by Elliot et al. includes the presence of either three major features (anterior abdominal wall defect, macroglossia, or prepostnatal overgrowth) or two major plus three minor findings (ear pits, nevus flammeus, neonatal hypoglycemia, nephromegaly, or hemihyperplasia).
While most children with BWS do not develop cancer, children with BWS do have a significantly increased risk of cancer. Children with BWS are most at risk during early childhood and should receive cancer screening during this time.
In general, children with BWS do very well and grow up to become adults of normal size and intelligence, usually without the syndromic features of their childhood.
The musculoskeletal manifestations of Proteus syndrome are frequent and recognizable. Patients tend to demonstrate a unique pattern of skeletal abnormalities. The orthopaedic features are usually bilateral, asymmetrical, progressive and involving all four limbs and spine. Afflicted patients usually have localized periarticular limb distortions, limb length discrepancy, and spine deformity. Patients with Proteus syndrome can have regular bone configuration and contours despite the bone enlargement. Patients can also exhibit hyperthyroidism of the skull and facial abnormalities. Because of the rarity of the syndrome and the variability of signs, the orthopaedic management should be individualized.
The brain is abnormally smooth, with fewer folds and grooves. The face, especially in children, has distinct characteristics including a short nose with upturned nares, thickened upper lip with a thin vermilion upper border, frontal bossing, small jaw, low-set posteriorily rotated ears, sunken appearance in the middle of the face, widely spaced eyes, and hypertelorism. The forehead is prominent with bitemporal hollowing.
Characteristics that are not visual include mental retardation, pre- and postnatal growth retardation, epilepsy, and reduced lifespan.
Failure to thrive, feeding difficulties, seizures and decreased spontaneous activity are often seen. Death usually occurs in infancy and childhood.
Multiple abnormalities of the brain, kidneys, and gastrointestinal tract (the stomach and intestines) may occur.
One of the most prominent and visible symptoms of Nevo Syndrome is the prenatal overgrowth, which continues into the infant and toddler stage. This excessive weight gain can be attributed to the low concentrations of growth hormone and insulin growth factor that are normally present to regulate weight gain. Other common symptoms associated with Nevo Syndrome are the outward wrist-drop, edema in hands and feet, undescended testes, low-set ears, hypotonia, the presence of low muscle tone in children, and long tapered fingers, and a highly arched palate.
The following is a list of symptoms that have been associated with Roberts syndrome:
- Bilateral Symmetric Tetraphocomelia- a birth defect in which the hands and feet are attached to shortened arms and legs
- Prenatal Growth Retardation
- Hypomelia (Hypoplasia)- the incomplete development of a tissue or organ; less drastic than aplasia, which is no development at all
- Oligodactyly- fewer than normal number of fingers or toes
- Thumb Aplasia- the absence of a thumb
- Syndactyly- condition in which two or more fingers (or toes) are joined together; the joining can involve the bones or just the skin between the fingers
- Clinodactyly- curving of the fifth finger (little finger) towards the fourth finger (ring finger) due to the underdevelopment of the middle bone in the fifth finger
- Elbow/Knee Flexion Contractures- an inability to fully straighten the arm or leg
- Cleft Lip- the presence of one or two vertical fissures in the upper lip; can be on one side (unilateral) or on both sides (bilateral)
- Cleft Palate- opening in the roof of the mouth
- Premaxillary Protrusion- upper part of the mouth sticks out farther than the lower part of the mouth
- Micrognathia- small chin
- Microbrachycephaly- smaller than normal head size
- Malar Hypoplasia- underdevelopment of the cheek bones
- Downslanting Palpebral Fissures- the outer corners of the eyes point downwards
- Ocular Hypertelorism- unusually wide-set eyes
- Exophthalmos- a protruding eyeball
- Corneal Clouding- clouding of the front-most part of the eye
- Hypoplastic Nasal Alae- narrowing of the nostrils that can decrease the width of the nasal base
- Beaked Nose- a nose with a prominent bridge that gives it the appearance of being curved
- Ear Malformations
- Intellectual disability
- Encephalocele (only in severe cases)- rare defect of the neural tube characterized by sac-like protrusions of the brain
Mortality is high among those severely affected by Roberts syndrome; however, mildly affected individuals may survive to adulthood
The symptoms and prognosis of tetrasomy 9p are highly variable. The severity of the symptoms is largely determined by the size of the isochromosome, the specific regions of chromosome 9p that are duplicated, as well as the number and type of tissues that are affected in the mosaic form.
Most patients exhibit some degree of intellectual disability, abnormal skeletal and muscular development, and abnormal facial structures. Cognitive symptoms range from slight learning disabilities to severe deficits in intellectual functioning. Due to abnormal development of the muscles, individuals often experience limited or delayed mobility. Atypical facial features are characteristic of the syndrome, including widely spaced eyes, a large nose, and unusually positioned ears. Additionally, patients often have extra skin around the neck and widely spaced nipples. A wide range of renal, digestive, cardiac, respiratory, and nervous system abnormalities have been observed.
Though rare, a few cases of phenotypically normal individuals with tetrasomy 9p have been documented.
Children with Weaver syndrome tend to look similar and have distinctive physical and craniofacial characteristics, which may include several, but not all of the following features:
- Macrocephaly
- Large bifrontal diameter
- Flattened occiput
- Long philtrum
- Retrognathia
- Round face in infancy
- Prominent chin crease
- Large ears
- Strabismus
- Hypertelorism
- Epicanthal folds
- Downslanting palpebral fissures
Other features may include loose skin, thin deep-set nails, thin hair, short ribs, limited elbow and knee extension, camptodactyly, and a coarse, low-pitched voice. Delayed development of motor skills such as sitting, standing, and walking are commonly exhibited in early childhood. Patients with Weaver syndrome typically have mild intellectual disability with poor coordination and balance. They also have some neurological abnormalities such as speech delay, epilepsy, intellectual disability, hypotonia or hypertonia, and behavioral problems.
This syndrome is characterized by overgrowth and advanced bone age. Affected individuals are dysmorphic, with macrodolichocephaly, downslanting palpebral fissures and a pointed chin. The facial appearance is most notable in early childhood. Affected infants and children tend to grow quickly; they are significantly taller than their siblings and peers, and have an unusually large skull and large head. Adult height is usually in the normal range, although Broc Brown has the condition and was named the world's tallest teenager. As of late 2016, he was 7'8" and still growing.
Individuals with Sotos syndrome often have intellectual impairment, and most also have behavioral problems. Frequent behavioral impairments include attention deficit hyperactivity disorder (ADHD), phobias, obsessive compulsive disorder, tantrums, and impulsive behaviors (impulse control disorder). Problems with speech and language are also common. Affected individuals may often have stuttering, difficulty with sound production, or a monotone voice. Additionally, weak muscle tone (hypotonia) may delay other aspects of early development, particularly motor skills such as sitting and crawling.
Other signs include scoliosis, seizures, heart or kidney defects, hearing loss, and problems with vision. Some infants with this disorder experience jaundice and poor feeding. A small number of patients with Sotos syndrome have developed cancer, most often in childhood, but no single form of cancer has been associated with this condition. It remains uncertain whether Sotos syndrome increases the risk of specific types of cancer. If persons with this disorder have any increased cancer risk, their risk is only slightly greater than that of the general population.
Derivative 22 syndrome, or der(22), is a rare disorder associated with multiple congenital anomalies, including profound mental retardation, preauricular skin tags or pits, and conotruncal heart defects. It can occur in offspring of carriers of the constitutional chromosomal translocation t(11;22)(q23;q11), owing to a 3:1 meiotic malsegregation event resulting in partial trisomy of chromosomes 11 and 22. An unbalanced translocation between chromosomes 11 & 22 is described as Emanuel syndrome. It was characterized in 1980.
Bannayan–Riley–Ruvalcaba syndrome (BRRS) is a rare overgrowth syndrome and hamartomatous disorder with occurrence of multiple subcutaneous lipomas, macrocephaly and hemangiomas. The disease is inherited in an autosomal dominant manner.
The disease belongs to a family of hamartomatous polyposis syndromes, which also includes Peutz–Jeghers syndrome, juvenile polyposis and Cowden syndrome. Mutation of the PTEN gene underlies this syndrome, as well as Cowden syndrome, Proteus syndrome, and Proteus-like syndrome, these four syndromes are referred to as PTEN Hamartoma-Tumor Syndromes.
Little is known about the natural history of Roberts syndrome due to its wide clinical variability. The prognosis of the disease depends on the malformations, as the severity of the malformations correlates with survival. The cause of death for most fatalities of Roberts syndrome have not been reported; however, five deaths were reportedly due to infection.
The following are observations that have been made in individuals with cytogenetic findings of PCS/HR or ESCO2 mutations:
- The symptom of prenatal growth retardation is the most common finding and can be moderate to severe. Postnatal growth retardation can also be moderate to severe and correlates with the degree of severity of limb and craniofacial malformations.
- In limb malformations, the upper limbs are typically more severely affected than the lower limbs. There have been many cases of only upper limb malformation.
- In hand malformations, the thumb is most often affected, followed by the fifth finger (the little finger). In severe cases, the patient may only have three fingers and in rare cases only one.
- In craniofacial malformations, mildly affected individuals will have no abnormalities of the palate. The most severely affected will have a fronto-ethmoid-nasal-maxillary encephalocele.
- The severity of limb malformations and craniofacial malformations is correlated.
- Other abnormalities can occur in different parts of the body, including:
- Heart- atrial septal defects, ventricular septal defects, patent ductus arteriosus
- Kidneys- polycystic kidney, horseshoe kidney
- Male Genitals- enlarged penis, cryptorchidism
- Female Genitals- enlarged clitoris
- Hair- sparse, silvery-blonde scalp hair
- Cranial Nerve Paralysis, Moyamoya disease, Stroke, Intellectual disability
Greig cephalopolysyndactyly syndrome is a disorder that affects development of the limbs, head, and face. The features of this syndrome are highly variable, ranging from very mild to severe. People with this condition typically have one or more extra fingers or toes (polydactyly) or an abnormally wide thumb or big toe (hallux).
The skin between the fingers and toes may be fused (cutaneous syndactyly). This disorder is also characterized by widely spaced eyes (ocular hypertelorism), an abnormally large head size (macrocephaly), and a high, prominent forehead. Rarely, affected individuals may have more serious medical problems including seizures, mental retardation, and developmental delay.
Campomelic dysplasia (CMD) is a rare genetic disorder characterized by bowing of the long bones and many other skeletal and extraskeletal features.
It is frequently lethal in the neonatal period due to respiratory insufficiency, but the severity of the disease is variable, and some patients survive into adulthood.
The name is derived from the Greek roots "campo" (or "campto"), meaning bent, and "melia", meaning limb.
An unusual aspect of the disease is that up to two-thirds of affected 46,XY genotypic males display a range of Disorders of Sexual Development (DSD) and genital ambiguities or may even develop as normal phenotypic females as in complete 46 XY sex reversal.
An atypical form of the disease with absence of bowed limbs is called, prosaically, acampomelic campomelic dysplasia (ACD) and is found in about 10% of patients, particularly those surviving the neonatal period.
The skin lesions evolve through characteristic stages:
1. blistering (from birth to about four months of age),
2. a wart-like rash (for several months),
3. swirling macular hyperpigmentation (from about six months of age into adulthood), followed by
4. linear hypopigmentation.
Alopecia, hypodontia, abnormal tooth shape, and dystrophic nails are observed. Some patients have retinal vascular abnormalities predisposing to retinal detachment in early childhood. Cognitive delays/mental retardation are occasionally seen.
Discolored skin is caused by excessive deposits of melanin (normal skin pigment).
Most newborns with IP will develop discolored skin within the first two weeks.
The pigmentation involves the trunk and extremities, is slate-grey, blue or brown, and is distributed in irregular marbled or wavy lines.
The discoloration sometimes fades with age.
Neurological problems can include: cerebral atrophy, the formation of small cavities in the central white matter of the brain, and the loss of neurons in the cerebellar cortex.
About 20% of children with IP will have slow motor development, muscle weakness in one or both sides of the body, mental retardation, and seizures.
They are also likely to have visual problems, which can include: crossed eyes, cataracts, and severe visual loss.
Dental problems are common, and include missing or peg-shaped teeth - patients with IP often keep milk teeth into adult life.
Breast anomalies can occur in 1% of patients; anomalies can include hypoplasia and supernumerary nipples.
Skeletal and structural anomalies can occur in approximately 14% of patients, including:
- Somatic asymmetry,
- Hemivertebrae,
- Scoliosis,
- Spina bifida,
- Syndactyly,
- Acheiria (congenital absence of the hands - note: other limbs may be affected),
- Ear anomalies,
- Extra ribs,
- Skull deformities,
- Primary pulmonary hypertension,
- Cardiopulmonary failure
Nevo Syndrome is a rare autosomal recessive disorder that usually begins during the later stages of pregnancy. Nevo Syndrome is caused by a NSD1 deletion, which encodes for methyltransferase involved with chromatin regulation. The exact mechanism as to how the chromatin is changed is unknown and still being studied. Nevo Syndrome is an example of one of about twelve overgrowth syndromes known today. Overgrowth syndromes are characterized with children experiencing a significant overgrowth during pregnancy and also excessive postnatal growth. Studies concerning Nevo Syndrome have shown a similar relation to Ehlers-Danlos syndrome, a connective tissue disorder. Nevo Syndrome is associated with kyphosis, an abnormal increased forward rounding of the spine, joint laxity, postpartum overgrowth, a highly arched palate, undescended testes in males, low-set ears, increased head circumference, among other symptoms.
Physical Symptoms
- Heart Defects
- Characteristics of Autism
- Genital defects (in males)
- Childhood hypotonia
- Respiratory infections
- Motor Delay
- Renal defects
Behavioural Symptoms
- Passiveness
- Sociability
- Aggression
- Biting, and/or hitting
- Moodiness
- Disliking routine changes
While the definitive presentation of the disease is a patient having bowed lower limbs and sex reversal in 46,XY males, there are other clinical criteria that can be used, absent these characteristics, to make the diagnosis. Patients may present with underdeveloped shoulder blades, shortened and angulated lower limbs, a vertically oriented and narrow pelvis, an enlarged head, an undersized jaw, cleft palate, flat nasal bridge, low set ears, club feet, dislocated hips, 11 pairs of ribs instead of 12, or bone abnormalities in the neck and spine. Respiratory distress can be caused by an underdeveloped trachea which collapses on inhalation or by insufficient rib cage development.
CLOVES syndrome is an extremely rare overgrowth syndrome, with complex vascular anomalies. CLOVES syndrome affects people with various symptoms, ranging from mild fatty soft-tissue tumors to vascular malformations encompassing the spine or internal organs. CLOVES syndrome is closely linked to other overgrowth disorders like proteus syndrome, Klippel–Trénaunay syndrome, Sturge–Weber syndrome, and hemihypertrophy, to name a few.
'CLOVES' is an acronym for:
- C is for congenital.
- L is for lipomatous, which means pertaining to or resembling a benign tumor made up of mature fat cells. Most CLOVES patients present with a soft fatty mass at birth, often visible on one or both sides of the back, legs and/or abdomen.
- O is for overgrowth, because there is an abnormal increase in the size of the body or a body part that is often noted at birth. Patients with CLOVES may have affected areas of their bodies that grow faster than in other people. Overgrowth of extremities (usually arms or legs) is seen, with large wide hands or feet, large fingers or toes, wide space between fingers, and asymmetry of body parts.
- V is for vascular malformations, which are blood vessel abnormalies. Patients with CLOVES have different venous, capillary, and lymphatic channels - typically capillary, venous and lymphatic malformations are known as "slow flow" lesions. Some patients with CLOVES have combined lesions (which are fast flow) and some have aggressive vascular malformation known as arteriovenous malformations (AVM). The effect of a vascular malformation varies per patient based on the type, size, and location of the malformation, and symptoms can vary.
- E is for Epidermal naevi, which are sharply-circumscribed chronic lesions of the skin, and benign. These are often flesh-colored, raised or warty.
- S is for Spinal/Skeletal Anomalies or scoliosis. Some patients with CLOVES have tethered spinal cord, vascular malformations in or around their spines, and other spinal differences. High-flow aggressive spinal lesions (like AVM) can cause serious neurological deficits/paralysis.
The syndrome was first recognised by Saap and colleagues who recognised the spectrum of symptoms from a set of seven patients. In this initial description the syndrome is named CLOVE syndrome. It is believed that the first description of a case of CLOVES syndrome was written by Hermann Friedberg, a German physician, in 1867.
Miller–Dieker syndrome (abbreviated MDS), Miller–Dieker lissencephaly syndrome (MDLS), and chromosome 17p13.3 deletion syndrome is a micro deletion syndrome characterized by congenital malformations. Congenital malformations are physical defects detectable in an infant at birth which can involve many different parts of the body including the brain, hearts, lungs, liver, bones, or intestinal tract.
MDS is a contiguous gene syndrome - a disorder due to the deletion of multiple gene loci adjacent to one another. The disorder arises from the deletion of part of the small arm of chromosome 17p (which includes both the "LIS1" and "14-3-3 epsilon" genes), leading to partial monosomy. There may be unbalanced translocations (i.e. 17q:17p or 12q:17p), or the presence of a ring chromosome 17.
This syndrome should not be confused with Miller syndrome, an unrelated rare genetic disorder, or Miller Fisher syndrome, a form of Guillain–Barré syndrome.
Perlman syndrome (PS) (also called renal hamartomas, nephroblastomatosis and fetal gigantism) is a rare overgrowth disorder present at birth. It is characterized by polyhydramnios and fetal overgrowth, including macrocephaly, neonatal macrosomia, visceromegaly, dysmorphic facial features, and an increased risk for Wilms' tumor at an early age. The prognosis for Perlman syndrome is poor and it is associated with a high neonatal mortality.