Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
While the definitive presentation of the disease is a patient having bowed lower limbs and sex reversal in 46,XY males, there are other clinical criteria that can be used, absent these characteristics, to make the diagnosis. Patients may present with underdeveloped shoulder blades, shortened and angulated lower limbs, a vertically oriented and narrow pelvis, an enlarged head, an undersized jaw, cleft palate, flat nasal bridge, low set ears, club feet, dislocated hips, 11 pairs of ribs instead of 12, or bone abnormalities in the neck and spine. Respiratory distress can be caused by an underdeveloped trachea which collapses on inhalation or by insufficient rib cage development.
Prenatal and neonatal diagnosis of boomerang dysplasia includes several prominent features found in other osteochondrodysplasias, though the "boomerang" malformation seen in the long bones is the delineating factor.
Featured symptoms of boomerang dysplasia include: dwarfism (a lethal type of infantile dwarfism caused by systemic bone deformities), underossification (lack of bone formation) in the limbs, spine and ilium (pelvis); proliferation of multinucleated giant-cell chondrocytes (cells that produce cartilage and play a role in skeletal development - chondrocytes of this type are rarely found in osteochondrodysplasias), brachydactyly (shortened fingers) and (undersized, shortened bones).
The characteristic "boomerang" malformation presents intermittently among random absences of long bones throughout the skeleton, in affected individuals. For example, one individual may have an absent radius and fibula, with the "boomerang" formation found in both ulnas and tibias. Another patient may present "boomerang" femora, and an absent tibia.
Campomelic dysplasia (CMD) is a rare genetic disorder characterized by bowing of the long bones and many other skeletal and extraskeletal features.
It is frequently lethal in the neonatal period due to respiratory insufficiency, but the severity of the disease is variable, and some patients survive into adulthood.
The name is derived from the Greek roots "campo" (or "campto"), meaning bent, and "melia", meaning limb.
An unusual aspect of the disease is that up to two-thirds of affected 46,XY genotypic males display a range of Disorders of Sexual Development (DSD) and genital ambiguities or may even develop as normal phenotypic females as in complete 46 XY sex reversal.
An atypical form of the disease with absence of bowed limbs is called, prosaically, acampomelic campomelic dysplasia (ACD) and is found in about 10% of patients, particularly those surviving the neonatal period.
Boomerang dysplasia is a lethal form of osteochondrodysplasia known for a characteristic congenital feature in which bones of the arms and legs are malformed into the shape of a boomerang. Death usually occurs in early infancy due to complications arising from overwhelming systemic bone malformations.
Osteochondrodysplasias are skeletal disorders that cause malformations of both bone and cartilage.
In terms of the signs/symptoms of rhizomelic chondrodysplasia punctate one finds the following to be consistent with such a condition:
- Bilateral shortening of the femur
- Post-natal growth problems (deficiency)
- Cataracts
- Intellectual disability is present
- Possible seizures
- Possible infections of respiratory tract
Chondrodysplasia Blomstrand (also known as Blomstrand's lethal chondrodysplasia) is a rare disorder caused by mutation of the parathyroid hormone receptor resulting in the absence of a functioning PTHR1. It results in ossification of the endocrine system and intermembraneous tissues and advanced skeletal maturation
Schmid metaphyseal chondrodysplasia is a type of chondrodysplasia associated with a deficiency of collagen, type X, alpha 1.
Unlike other "rickets syndromes", affected individuals have normal serum calcium, phosphorus, and urinary amino acid levels. Long bones are short and curved, with widened growth plates and metaphyses.
It is named for the German researcher F. Schmid, who characterized it in 1949.
Cartilage–hair hypoplasia (CHH), also known as McKusick type metaphyseal chondrodysplasia, is a rare genetic disorder. It is a highly pleiotropic disorder that clinically manifests by form of short-limbed dwarfism due to skeletal dysplasia, variable level of immunodeficiency and predisposition to malignancies in some cases. It was first reported in 1965 by McKusick et al. Actor Verne Troyer is affected with this form of dwarfism, as was actor Billy Barty, who was renowned for saying "The name of my condition is Cartilage Hair Syndrome Hypoplasia, but you can just call me Billy."
Rhizomelic chondrodysplasia punctata is a rare, developmental brain disorder characterized by systemic shortening of the proximal bones (i.e. rhizomelia), seizures, recurrent respiratory tract infections, and congenital cataracts. The affected individuals have low levels of plasmalogens.
Chondrodysplasia punctata is a clinically and genetically diverse group of rare diseases, first described by Erich Conradi (1882–1968), that share the features of stippled epiphyses and skeletal changes.
Types include:
- Rhizomelic chondrodysplasia punctata , ,
- X-linked recessive chondrodysplasia punctata
- Conradi-Hünermann syndrome
- Autosomal dominant chondrodysplasia punctata
This condition occurs almost exclusively in males. The mutation may be spontaneous or inherited from the mother. The typical clinical features are:
- flat nasal tip
- short columella
- maxillary hypoplasia
- involvement of terminal phalanges
- stippled chondrodystrophy
Symptoms include:
- intellectual disability (more than half of the patients have an IQ below 50)
- microcephaly
- sometimes pancytopenia (low blood counts)
- cryptorchidism
- low birth weight
- dislocations of pelvis and elbow
- unusually large eyes
- low ears
- small chin
Blood levels of parathryoid hormone (PTH) are undetectable, but the mutation in the PTHR1 leads to auto-activation of the signaling as though the hormone PTH is present. Severe JMC produces a dwarfing phenotype, or short stature. Examination of the bone reveals normal epiphyseal plates but disorganized metaphyseal regions. Hypercalcemia (elevated levels of calcium in the blood) and hypophosphatemia (reduced blood levels of phosphate), and elevated urinary calcium and phosphate are generally found in JMC. The absence of hypercalcemia does not eliminate the disease from consideration.
Physical irregularities often associated with Jansen's include: prominent or protruding eyes, a high-arched palate, micrognathia or abnormal smallness of the jaws – particularly the lower (mandible) jaw, choanal stenosis, wide cranial sutures and irregular formation of the long bones which can resemble rickets. Nephrocalcinosis (accumulation of calcium in the interstitum of the kidney) is seen commonly as well.
Being an extremely rare autosomal genetic disorder, differential diagnosis has only led to several cases since 1972. Initial diagnosis lends itself to facial abnormalities including sloping forehead, maxillary hypoplasia, nasal bridge depression, wide mouth, dental maloclusion, and receding chin. Electroencephalography (EEG), computed tomography (CT) scanning, and skeletal survey are further required for confident diagnosis. Commonly, diffuse cartilage calcification and brachytelephalangism are identified by X-radiation (X-ray), while peripheral pulmonary arterial stenosis, hearing loss, dysmorphic facies, and mental retardation are confirmed with confidence by the aforementioned diagnostic techniques.
Majewski's polydactyly syndrome, also known as polydactyly with neonatal chondrodystrophy type I, short rib-polydactyly syndrome type II, and short rib-polydactyly syndrome, is a lethal form of neonatal dwarfism characterized by osteochondrodysplasia (skeletal abnormalities in the development of bone and cartilage) with a narrow thorax, polysyndactyly, disproportionately short tibiae, thorax dysplasia, hypoplastic lungs and respiratory insufficiency. Associated anomalies include protruding abdomen, brachydactyly, peculiar faces, hypoplastic epiglottis, cardiovascular defects, renal cysts, and also genital anomalies. Death occurs before or at birth.
The disease is inherited in an autosomal recessive pattern.
It was characterized in 1971.
Neu-Laxova syndrome presents with severe malformations leading to prenatal or neonatal death. Typically, NLS involves characteristic facial features, decreased fetal movements and skin abnormalities.
Fetuses or newborns with Neu–Laxova syndrome have typical facial characteristics which include proptosis (bulging eyes) with eyelid malformations, nose malformations, round and gaping mouth, micrognathia (small jaw) and low set or malformed ears. Additional facial malformations may be present, such as cleft lip or cleft palate. Limb malformations are common and involve the fingers (syndactyly), hands or feet. Additionally, edema and flexion deformities are often present. Other features of NLS are severe intrauterine growth restriction, skin abnormalities (ichthyosis and hyperkeratosis) and decreased movement.
Malformations in the central nervous system are frequent and may include microcephaly, lissencephaly or microgyria, hypoplasia of the cerebellum and agenesis of the corpus callosum. Other malformations may also be present, such as neural tube defects.
It causes facial abnormalities, skeletal malformation and occasionally neural tube defects; the skeletal disfigurements resolve to a degree in the course of development.
Mutations in different parts of the gene may lead to deafness or Stickler syndrome type III (eye problems: myopia, retinal detachment and skeletal abnormalities).
Infants and children: Infants that are born with Weissenbacher-Zweymüller syndrome usually have short bones in their arms and legs. The thigh and upper arm bones are wider than usual resulting in a dumbbell-shape while the bones of the vertebrae may be abnormal. Typical abnormal facial features can be wide-set protruding eyes (hypertelorism), a small and upturned nose with a flat bridge, small jaw (micrognathia) and a cleft palate. Some infants have high-frequency hearing loss. Infants may also exhibit a psychomotor delay. After the period of growth deficiency the individual makes improvements in bone growth leading to a normal physical development around age 5 or 6.
Adults: Many with Weissenbacher-Zweymüller syndrome have a catch-up growth phase causing the adults to not be unusually short. Many adults still will have hearing loss and typical abnormal facial features of Weissenbacher-Zweymüller syndrome.
X-linked recessive chondrodysplasia punctata is a type of chondrodysplasia punctata that can involve the skin, hair, and cause short stature with skeletal abnormalities, cataracts, and deafness.
This condition is also known as arylsulfatase E deficiency, CDPX1, and X-linked recessive chondrodysplasia punctata 1. The syndrome rarely affects females, but they can be carriers of the recessive allele. Although the exact number of people diagnosed with CDPX1 is unknown, it was estimated that 1 in 500,000 have CDPX1 in varying severity. This condition is not linked to a specific ethnicity. The mutation that leads to a deficiency in arylsulfatase E. (ARSE) occurs in the coding region of the gene.Absence of stippling, deposits of calcium, of bones and cartilage, shown on x-ray, does not rule out chondrodysplasia punctata or a normal chondrodysplasia punctata 1 (CDPX1) gene without mutation. Stippling of the bones and cartilage is rarely seen after childhood. Phalangeal abnormalities are important clinical features to look for once the stippling is no longer visible. Other, more severe, clinical features include respiratory abnormalities, hearing loss, cervical spine abnormalities, delayed cognitive development, ophthalmologic abnormalities, cardiac abnormalities, gastroesophageal reflux, and feeding difficulties. CDPX1 actually has a spectrum of severity; different mutations within the CDPX1 gene have different effects on the catalytic activity of the ARSE protein. The mutations vary between missense, nonsense, insertions, and deletions.
Diagnosis is often confirmed by several abnormalities of skeletal origin. There is a sequential order of findings, according to Cormode et al., which initiate in abnormal cartilage calcification and later brachytelephalangism. The uniqueness of brachytelephalangy in KS results in distinctively broadened and shortened first through fourth distal phalanges, while the fifth distal phalanx bone remains unaffected. Radiography also reveals several skeletal anomalies including facial hypoplasia resulting in underdevelopment of the nasal bridge with noticeably diminished alae nasi. In addition to distinguishable facial features, patients generally demonstrate shorter than average stature and general mild developmental delay.
Jansen's metaphyseal chondrodysplasia (JMC) is a disease that results from ligand-independent activation of the type 1 of the parathyroid hormone receptor (PTHR1), due to one of three reported mutations (activating mutation).
JMC is extremely rare, and as of 2007 there are fewer than 20 reported cases worldwide.
Achondrogenesis is a number of disorders that are the most severe form of congenital chondrodysplasia (malformation of bones and cartilage). These conditions are characterized by a small body, short limbs, and other skeletal abnormalities. As a result of their serious health problems, infants with achondrogenesis are usually born prematurely, are stillborn, or die shortly after birth from respiratory failure. Some infants, however, have lived for a while with intensive medical support.
Researchers have described at least three forms of achondrogenesis, designated as Achondrogenesis type 1A, achondrogenesis type 1B and achondrogenesis type 2. These types are distinguished by their signs and symptoms, inheritance pattern, and genetic cause. Other types of achondrogenesis may exist, but they have not been characterized or their cause is unknown.
Achondrogenesis type 1A is caused by a defect in the microtubules of the Golgi apparatus. In mice, a nonsense mutation in the thyroid hormone receptor interactor 11 gene (Trip11), which encodes the Golgi microtubule-associated protein 210 (GMAP-210), resulted in defects similar to the human disease. When their DNA was sequenced, human patients with achondrogenesis type 1A also had loss-of-function mutations in GMAP-210. GMAP-210 moves proteins from the endoplasmic reticulum to the Golgi apparatus. Because of the defect, GMAP-210 is not able to move the proteins, and they remain in the endoplasmic reticulum, which swells up. The loss of Golgi apparatus function affects some cells, such as those responsible for forming bone and cartilage, more than others.
Achondrogenesis type 1B is caused by a similar mutation in SLC26A2, which encodes a sulfate transporter.
Spider lamb syndrome, also known as spider syndrome and more formally as ovine hereditary chondrodysplasia, is a homozygous recessive disorder affecting the growth of cartilage and bone in sheep. It is a semilethal trait, which is thought to have been first observed in the 1970s, and is most common in sheep of the Suffolk and Hampshire breeds. The mutation which causes spider lamb syndrome is found on ovine chromosome 6, and involves the inactivation of fibroblast growth factor receptor 3.
Afflicted animals may be visibly deformed at birth and unable to stand, or seemingly normal for the first 4 to 6 weeks of their lives.
The name derives from the limbs of afflicted animals being thin, elongated, and "spider-like".
Patients with CHH usually suffer from cellular immunodeficiency. In the study of 108 Finnish patients with CHH there was detected mild to moderate form of lymphopenia, decreased delayed type of hypersensitivity and impaired responses to phytohaemagglutinin. This leads to susceptibility to and, in some more severe cases, mortality from infections early in childhood. There has also been detected combined immunodeficiency in some patients
Patients with CHH often have increased predispositions to malignancies.
Neu–Laxova syndrome (also known as Neu syndrome or Neu-Povysilová syndrome, abbreviated as NLS) is a rare autosomal recessive disorder characterized by severe intrauterine growth restriction and multiple congenital malformations. Neu–Laxova syndrome is a very severe disorder, leading to stillbirth or neonatal death. It was first described by Dr. Richard Neu in 1971 and Dr. Renata Laxova in 1972 as a lethal disorder in siblings with multiple malformations. Neu–Laxova syndrome is an extremely rare disorder with less than 100 cases reported in medical literature.
Achondroplasia is a genetic disorder that results in dwarfism. The arms and legs are short, while the trunk is typically of normal length. Those affected have an average adult height of for males and for females. Other features include an enlarged head and prominent forehead. Intelligence is generally normal.
Achondroplasia is due to a mutation in the FGFR3 gene. In about 80% of cases this occurs as a new mutation during early development. In the other cases it is inherited from one's parents in an autosomal dominant manner. Those with two effected genes do not typically survive. Diagnosis is generally based on symptoms, but may be supported by genetic testing if uncertain.
Treatments may include support groups and growth hormone therapy. Efforts to treat or prevent complications such as obesity, hydrocephalus, obstructive sleep apnea, middle ear infections, or spinal stenosis may be required. Life expectancy of those affected is about 10 years less than average. The condition affects about 1 in 27,500 people. Rates are higher in Denmark and Latin America. The shortest known adults with the condition is Jyoti Amge at .