Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Clinical presentation of CPM is heterogeneous and depend on the regions of the brain involved. Prior to its onset, patients may present with the neurological signs and symptoms of hyponatraemic encephalopathy such as nausea and vomiting, confusion, headache and seizures. These symptoms may resolve with normalisation of the serum sodium concentration. Three to five days later, a second phase of neurological manifestations occurs correlating with the onset of myelinolysis. Observable immediate precursors may include seizures, disturbed consciousness, gait changes, and decrease or cessation of respiratory function.
The classical clinical presentation is the progressive development of spastic quadriparesis, pseudobulbar palsy, and emotional lability (pseudobulbar affect), with other more variable neurological features associated with brainstem damage. These result from a rapid myelinolysis of the corticobulbar and corticospinal tracts in the brainstem.
Symptoms can include, but are not limited to lack of consciousness, aggression, seizures, depression, hemiparesis, ataxia, apraxia, coma, etc. There will also be lesions in the corpus callosum.
Depending on the location of the brain lesion different symptoms are more frequent:
- Brainstem tegmentum. - Ocular: pupillary changes. Extraocular muscle palsy; gaze palsy: nystagmus.
- Hypothalamus. Medulla: dorsal nuc. of vagus. - Autonomic dysfunct.: temperature; cardiocirculatory; respiratory.
- Medulla: vestibular region. Cerebellum. - Ataxia.
- Dorsomedial nuc. of thalamus. Mammillary bodies. - Amnestic syndrome for recent memory.
Mamillary lesion are characteristic-small petechial hemorrhages are found.
- Diffuse cerebral dysfunction.- Altered cognition: global confusional state.
- Brainstem: periaqueductal gray.- Reduction of consciousness
- Hypothalamic lesions may also affect the immune system, which is known in alcohol abusers, causing dysplasias and infections.
The classic triad of symptoms found in Wernicke's encephalopathy is:
- ophthalmoplegia (later expanded to other eye movement abnormalities, most commonly affecting the lateral rectus or any eye sign. Lateral nystagmus is most commonly seen although lateral rectus palsy, usually bilateral, may be seen).
- ataxia (later expanded to imbalance or any cerebellar signs)
- confusion (later expanded to other mental changes. Has 82% incidence in diagnosis cases)
However, in actuality, only a small percentage of patients experience all three symptoms, and the full triad occurs more frequently among those who have overused alcohol.
Also a much more diverse range of symptoms has been found in patients with this condition, including:
- pupillary changes, retinal hemorrhage, papilledema, impaired vision and hearing, vision loss
- hearing loss,
- fatigability, apathy, irritability, drowsiness, psycho and/or motor slowing
- dysphagia, blush, sleep apnea, epilepsy and stupor
- lactic acidosis
- memory impairment, amnesia, depression, psychosis
- hypothermia, polyneuropathy, hyperhidrosis.
Although hypothermia is usually diagnosed with a body temperature of 35 °C / 95° Fahrenheit, or less, incipient cooling caused by deregulation in the CNS needs to be monitored because it can promote the development of an infection. The patient may report feeling cold, followed by mild chills, cold skin, moderate pallor, tachycardia, hypertension, tremor or piloerection. External warming techniques are advised to prevent hypothermia.
Among the frequently altered functions are the cardio circulatory. There may be tachycardia, dyspnea, chest pain, orthostatic hypotension, changes in heart rate and blood pressure. The lack of thiamine sometimes affects other major energy consumers, the myocardium, and also patients may have developed cardiomegaly. Heart failure with lactic acidosis syndrome has been observed. Cardiac abnormalities are an aspect of the WE, which was not included in the traditional approach, and are not classified as a separate disease.
Infections have been pointed out as one of the most frequent triggers of death in WE. Furthermore, infections are usually present in pediatric cases.
In the last stage others symptoms may occur: hyperthermia, increased muscle tone, spastic paralysis, choreic dyskinesias and coma.
Because of the frequent involvement of heart, eyes and peripheral nervous system, several authors prefer to call it Wernicke disease rather than simply encephalopathy.
Early symptoms are nonspecific, and it has been stated that WE may present nonspecific findings. In Wernicke Korsakoff’s syndrome some single symptoms are present in about one-third.
Typically, initial signs and symptoms of this disorder occur during infancy or early childhood and can include feeding difficulties, lethargy, hypoglycemia, hypotonia, liver problems, and abnormalities in the retina. Muscle pain, a breakdown of muscle tissue, and abnormalities in the nervous system that affect arms and legs (peripheral neuropathy) may occur later in childhood. There is also a risk for complications such as life-threatening heart and breathing problems, coma, and sudden unexpected death. Episodes of LCHAD deficiency can be triggered by periods of fasting or by illnesses such as viral infections.
Polioencephalomalacia (PEM), also referred to as cerebrocortical necrosis (CCN), is a neurological disease seen in ruminants that is caused by disrupted thiamine production in the body. Thiamine is a key chemical in glucose metabolism that, when definicient, is most threatening to neurological activity. Cattles, sheep, goat, and other ruminants that are diagnosed with PEM or pre-PEM suffer opishotonus, cortical blindness, disoriented movement, and eventually fatality, if left untreated. Current data shows that the onset of PEM can range from birth to late adulthood.
Clinical signs of PEM are variable depending on the area of the cerebral cortex affected and may include head pressing, dullness, opisthotonos, central blindness, anorexia, muscle tremors, teeth grinding, trismus, salivation, drooling, convulsions, nystagmus, clonic convulsions, and recumbency. Early administration of thiamine may be curative, but if the lesion is more advanced, then surviving animals may remain partially blind and mentally dull.
Depending on the affected gene(s), this disorder may present symptoms that range from mild to life-threatening.
- Stroke
- Progressive encephalopathy
- Seizure
- Kidney failure
- Vomiting
- Dehydration
- Failure to thrive and developmental delays
- Lethargy
- Repeated Yeast infections
- Acidosis
- Hepatomegaly
- Hypotonia
- Pancreatitis
- Respiratory distress
Like other mitochrondrial diseases, "MNGIE is a multisystem disorder". MNGIE primarily affects the gastrointestinal and neurological systems. Gastrointestinal symptoms may include gastrointestinal dysmotility, due to inefficient peristalsis, which may result in pseudo-obstruction and cause malabsorption of nutrients. Additionally, gastrointestinal symptoms such as borborygmi, early satiety, diarrhea, constipation, gastroparesis, nausea, vomiting, weight loss, and diverticulitis may be present in MNGIE patients. Neurological symptoms may include diffuse leukoencephalopathy, peripheral neuropathy, and myopathy. Ocular symptoms may include retinal degeneration, ophthalmoplegia, and ptosis. Those with MNGIE are often thin and experience continuous weight loss. The characteristic thinness of MNGIE patients is caused by multiple factors including inadequate caloric intake due to gastrointestinal symptoms and discomfort, malabsorption of food from bacterial overgrowth due to decreased motility, as well as an increased metabolic demand due to inefficient production of ATP by the mitochondria.
It typically presents as a severe encephalopathy with myoclonic seizures, is rapidly progressive and eventually results in respiratory arrest.Standard evaluation for inborn errors of metabolism and other causes of this presentation does not reveal any abnormality (no acidosis, no hypoglycaemia, or hyperammonaemia and no other organ affected). Pronounced and sustained hiccups in an encephalopathic infant have been described as a typical observation in non-ketotic hyperglycinaemia.
Marchiafava-Bignami disease is routinely diagnosed with the use of an MRI due to the fact that the majority of clinical symptoms are non-specific. Before the use of such imaging equipment, it was unable to be diagnosed until autopsy. The patient usually has a history of alcoholism or malnutrition and neurological symptoms are sometimes present and can help lead to a diagnosis. MBD can be told apart from other neural diseases due to the symmetry of the lesions in the corpus callosum as well as the fact that these lesions don’t affect the upper and lower edges.
There are two clinical subtypes of MBD
Type A- Stupor and coma predominate. Radiological imaging shows involvement of the entire corpus callosum. This type is also associated with symptoms of the upper motor neurons.
Type B- This type has normal or only mildly impair mental status and radiological imaging shows partial lesions in the corpus callosum.
There are several different forms of glycine encephalopathy, which can be distinguished by the age of onset, as well as the types and severity of symptoms. All forms of glycine encephalopathy present with only neurological symptoms, including mental retardation (IQ scores below 20 are common), hypotonia, apneic seizures, and brain malformations.
With the classical, or neonatal presentation of glycine encephalopathy, the infant is born after an unremarkable pregnancy, but presents with lethargy, hypotonia, apneic seizures and myoclonic jerks, which can progress to apnea requiring artificial ventilation, and often death. Apneic patients can regain spontaneous respiration in their second to third week of life. After recovery from the initial episode, patients have intractable seizures and profound mental retardation, remaining developmentally delayed. Some mothers comment retrospectively that they noticed fetal rhythmic "hiccuping" episodes during pregnancy, most likely reflecting seizure episodes in utero. Patients with the infantile form of glycine encephalopathy do not show lethargy and coma in the neonatal period, but often have a history of hypotonia. They often have seizures, which can range in severity and responsiveness to treatment, and they are typically developmentally delayed. Glycine encephalopathy can also present as a milder form with episodic seizures, ataxia, movement disorders, and gaze palsy during febrile illness. These patients are also developmentally delayed, to varying degrees. In the later onset form, patients typically have normal intellectual function, but present with spastic diplegia and optic atrophy.
Transient neonatal hyperglycinemia has been described in a very small number of cases. Initially, these patients present with the same symptoms and laboratory results that are seen in the classical presentation. However, levels of glycine in plasma and cerebrospinal fluid typically normalize within eight weeks, and in five of six cases there were no neurological issues detected at follow-up times up to thirteen years. A single patient was severely retarded at nine months. The suspected cause of transient neonatal hyperglicinemia is attributed to low activity of the glycine cleavage system in the immature brain and liver of the neonate.
Central pontine myelinolysis (CPM) is a neurological disorder caused by severe damage of the myelin sheath of nerve cells in the area of the brainstem termed the "pons", predominately of iatrogenic, treatment-induced cause. It is characterized by acute paralysis, dysphagia (difficulty swallowing), and dysarthria (difficulty speaking), and other neurological symptoms.
Central pontine myelinolysis was first described by Adams et al. in 1959 as a clinicopathological entity. The original paper described four cases with fatal outcomes, and the findings on autopsy. The cause was not known then but the authors suspected either a toxin or a nutritional deficiency. ‘Central pontine’ indicated the site of the lesion and ‘myelinolysis’ was used to emphasise that myelin was affected preferentially compared to the other neuronal elements. The authors intentionally avoided the term ‘demyelination’ to describe the condition, in order to differentiate this condition from multiple sclerosis and other neuroinflammatory disorders.
Since this original description, demyelination in other areas of the central nervous system associated with osmotic stress has been described outside the pons. The more general term "osmotic demyelination syndrome" is now preferred to the original more restrictive term "central pontine myelinolysis".
Central pontine myelinolysis presents most commonly as a complication of treatment of patients with profound hyponatremia (low sodium), which can result from a varied spectrum of conditions, based on different mechanisms. It occurs as a consequence of a rapid rise in serum tonicity following treatment in individuals with chronic, severe hyponatremia who have made intracellular adaptations to the prevailing hypotonicity.
Short-chain acyl-coenzyme A dehydrogenase deficiency affected infants will have vomiting, low blood sugar, a lack of energy (lethargy), poor feeding, and failure to gain weight and grow. Additional features of this disorder may include poor muscle tone (hypotonia), seizures, developmental delays, and microcephaly. The symptoms of short-chain acyl-CoA dehydrogenase deficiency may be triggered during illnesses such as viral infections. In some cases, signs and symptoms may not appear until adulthood, when some individuals may develop muscle weakness, while other individuals mild symptoms may never be diagnosed.
As with several other metabolic conditions, OTC deficiency can have variable presentations, regarding age of onset and the severity of symptoms. This compounded when considering heterozygous females and the possibility of non-random X-inactivation. In the classic and most well-known presentation, a male infant appears well initially, but by the second day of life they are irritable, lethargic and stop feeding. A metabolic encephalopathy develops, and this can progress to coma and death without treatment. Ammonia is only toxic to the brain, other tissues can handle elevated ammonia concentrations without problems.
Later onset forms of OTC deficiency can have variable presentations. Although late onset forms of the disease are often considered milder than the classic infantile presentation, any affected individual is at risk for an episode of hyperammonemia that could still be life-threatening, if presented with the appropriate stressors. These patients will often present with headaches, nausea, vomiting, delayed growth and a variety of psychiatric symptoms (confusion, delirium, aggression, or self-injury). A detailed dietary history of an affected individual with undiagnosed OTC deficiency will often reveal a history of protein avoidance.
The prognosis of a patient with severe OTC deficiency is well correlated with the length of the hyperammonemic period rather than the degree of hyperammonemia or the presence of other symptoms, such as seizures. Even for patients with late onset forms of the disease, their overall clinical picture is dependent on the extent of hyperammonemia they have experienced, even if it has remained unrecognized.
Fumarase deficiency causes encephalopathy, severe mental retardation, unusual facial features, brain malformation, and epileptic seizures due to an abnormally low amount of fumarase in cells. It can initially present with polyhydramnios on prenatal ultrasound. Affected neonates may demonstrate nonspecific signs of poor feeding and hypotonia. Laboratory findings in neonates may indicate polycythemia, leukopenia, or neutropenia. As they age, neurological deficits begin to manifest with seizures, dystonias, and severe developmental delay.
Infants with this disease seem healthy at birth but quickly deteriorate, often with severe brain damage, which may be permanent. Death often occurs within the first five months in severe cases of the disease, when left untreated.
The symptoms of MSUD may also present later depending on the severity of the disease. Untreated in older individuals, and during times of metabolic crisis, symptoms of the condition include uncharacteristically inappropriate, extreme or erratic behaviour and moods, hallucinations, anorexia, weight loss, anemia, diarrhea, vomiting, dehydration, lethargy, oscillating hypertonia and hypotonia, ataxia, seizures, hypoglycaemia, ketoacidosis, opisthotonus, pancreatitis, rapid neurological decline, and coma. Without prompt treatment, they will likely die from cerebral edema. Additionally, maple syrup urine disease patients often experience an abnormal course of disease in simple infections that become increasingly severe and can have permanent damage. In more rare cases, concomitant osteoporosis may also appear in these patients.
Alcoholic polyneuropathy usually has a gradual onset over months or even years although axonal degeneration often begins before an individual experiences any symptoms. An early warning sign (prodrome) of the possibility of developing alcoholic polyneuropathy, specially in a chronic alcoholic, would be weight loss because this usually signifies a nutritional deficiency that can lead to the development of the disease.
The disease typically involves sensory and motor loss, as well as painful physical perceptions (paresthesias), though all sensory modalities may be involved. Symptoms that affect the sensory and motor systems seem to develop symmetrically. For example, if the right foot is affected, the left foot is affected simultaneously or soon becomes affected. In most cases, the legs are affected first, followed by the arms. The hands usually become involved when the symptoms reach above the ankle. This is called a stocking-and-glove pattern of sensory disturbances.
Polyneuropathy spans a large range of severity. Some cases are seemingly asymptomatic and may only be recognized on careful examination. The most severe cases may cause profound physical disability.
Sensory symptoms are gradually followed by motor symptoms. Motor symptoms may include muscle cramps and weakness, erectile dysfunction in men, problems urinating, constipation, and diarrhea. Individuals also may experience muscle wasting and decreased or absent deep tendon reflexes. Some people may experience frequent falls and gait unsteadiness due to ataxia. This ataxia may be caused by cerebellar degeneration, sensory ataxia, or distal muscle weakness. Over time, alcoholic polyneuropathy may also cause difficulty swallowing (dysphagia), speech impairment (disarthria), muscle spasms, and muscle atrophy.
In addition to alcoholic polyneuropathy, the individual may also show other related disorders such as Wernicke-Korsakoff syndrome and cerebellar degeneration that result from alcoholism-related nutritional disorders.
Neurologic signs and symptoms include progressively delayed development, weak muscle tone (hypotonia), seizures, and abnormal movements. The body's network of blood vessels is also affected. Children with this disorder may experience rashes of tiny red spots (petechiae) caused by bleeding under the skin and blue discoloration in the hands and feet due to reduced oxygen in the blood (acrocyanosis). Chronic diarrhea is another common feature of ethylmalonic encephalopathy. EE is often identified by urine organic acid analysis, the excretion of ethylmalonic acid, methylsuccinic acid, isobutyrylglycine and isovalerylglucine. Patients will also often have elevated thiosulphate concentration in their urine.
The signs and symptoms of ethylmalonic encephalopathy are apparent at birth or begin in the first few months of life. Problems with the nervous system typically worsen over time, and most affected individuals survive only into early childhood. A few children with a milder, chronic form of this disorder have been reported, and there can be considerable phenotypic variation, even within families. The life expectancy of individuals with EE is less than ten years.
Methylmalonic acidemia (MMA), also called methylmalonic aciduria, is an autosomal recessive metabolic disorder. It is a classical type of organic acidemia. The result of this condition is the inability to properly digest specific fats and proteins, which in turn leads to a buildup of a toxic level of methylmalonic acid in the blood.
Methylmalonic acidemia stems from several genotypes, all forms of the disorder usually diagnosed in the early neonatal period, presenting progressive encephalopathy, and secondary hyperammonemia. The disorder can result in death if undiagnosed or left untreated. It is estimated that this disorder has a frequency of 1 in 48,000 births, though the high mortality rate in diagnosed cases make exact determination difficult. Methylmalonic acidemias are found with an equal frequency across ethnic boundaries.
Long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency, often shortened to LCHAD deficiency, is a rare autosomal recessive fatty acid oxidation disorder that prevents the body from converting certain fats into energy. This can become life-threatening, particularly during periods of fasting.
Short-chain acyl-coenzyme A dehydrogenase deficiency (SCADD), also called ACADS deficiency and SCAD deficiency, is an autosomal recessive fatty acid oxidation disorder which affects enzymes required to break down a certain group of fats called short chain fatty acids.
Late-onset PFK deficiency, as the name suggests, is a form of the disease that presents later in life. Common symptoms associated with late-onset phosphofructokinase deficiency are myopathy, weakness and fatigue. Many of the more severe symptoms found in the classic type of this disease are absent in the late-onset form.