Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Males show more serious symptoms than females affected by this disorder.
The symptoms for males are:
1. Profound sensorineural hearing loss i.e, a complete or almost complete loss of hearing caused by abnormalities in the inner ear.
2. Weak muscle tone - Hypotonia.
3. Impaired muscle coordination - Ataxia.
4. Developmental delay.
5. Intellecual disability.
6. Vision loss caused by optic nerve atrophy in early childhood.
7. Peripheral neuropathy.
8. Recurrent infections, especially in the respiratory system.
9. Muscle weakness caused by recurrent infections.
Symptoms for females:
Very rarely seen hearing loss that begins in adulthood (age > 20 years) combined with ataxia and neuropathy. Optic atrophy and retinitis pigmentosa observed in some cases too.
Symptoms of the Roussy–Lévy syndrome mainly stem from nerve damage and the resulting progressive muscle atrophy. Neurological damage may result in absent tendon reflexes (areflexia), some distal sensory loss and decreased excitability of muscles to galvanic and faradic stimulation. Progressive muscle wasting results in weakness of distal limb muscles (especially the peronei), gait ataxia, pes cavus, postural tremors and static tremor of the upper limbs, kyphoscoliosis, and foot deformity.
These symptoms frequently translate into delayed onset of ability to walk, loss of coordination and balance, foot drop, and foot-bone deformities. They are usually first observed during infancy or early childhood, and slowly progress until about age 30, at which point progression may stop in some individuals, or symptoms may continue to slowly progress.
Onset occurs in infancy or early childhood, usually before 3 years of age. Progression is slow until the teenage years at which point it may accelerate, resulting in severe disability.
Symptoms are usually more severe and rapidly progressive than in the other more common Charcot–Marie–Tooth diseases. Some patients may never walk and solely use wheelchairs by the end of their first decade, while others may need only a cane (walking stick) or similar support through life.
Dejerine–Sottas disease is characterized by moderate to severe lower and upper extremity weakness and loss of sensation, which occur mainly in the lower legs, forearms, feet and hands. Loss of muscle mass and reduced muscle tone can occur as the disease progresses. Other symptoms may include pain in the extremities, curvature of the spine, clawed hands, foot deformities, ataxia, peripheral areflexia, and slow acquisition of motor skills in childhood. Symptoms that are less common can include limitation of eye movements, other eye problems such as nystagmus or anisocoria, or mild hearing loss.
In an individual with dHMN V, electromyography will show pure motor neuropathy, patterns of weakness without upper motor neuron damage, in the hands. Tendon reflexes will also appear normal. Clinical, electrophysiological, and pathological testing will show a lack of damage to sensory neurons, differentiating this disease from CMT.
Onset usually occurs within the first two decades of life, commonly in the teenage years or the twenties. Life expectancy is normal. High arch of the foot (pes cavus) is common. Patients also have trouble controlling their hands, due to muscle loss on the thumb side of the index finger and palm below the thumb. It is rare for a person with this disorder to lose the ability to walk, though changes in gait may occur later in life.
Frequency of this disorder is unknown.
The incidence of this disease is not precisely known but it is considered to be rare (< 1/10 population). It has been reported in 15 families to date mostly from Canada, Finland and France.
This disease usually presents between the ages of 5 to 10 years old. The usual picture is with weakness involving the upper legs and affects activities such as running and climbing stairs. As the condition progresses, patients tend to experience weakness in their lower legs and arms. Some remain able to walk in advanced age, while others require assistance in adulthood.
Roussy–Lévy syndrome, also known as Roussy–Lévy hereditary areflexic dystasia, is a rare genetic disorder of humans that results in progressive muscle wasting. It is caused by mutations in the genes that code for proteins necessary for the functioning of the myelin sheath of the neurons, affecting the conductance of nerve signals and resulting in loss of muscles' ability to move.
The condition affects people from infants through adults and is inherited in an autosomal dominant manner. Currently, no cure is known for the disorder.
Symptoms of CMT usually begin in early childhood or early adulthood, but can begin later. Some people do not experience symptoms until their early thirties or forties. Usually, the initial symptom is foot drop early in the course of the disease. This can also cause hammer toe, where the toes are always curled. Wasting of muscle tissue of the lower parts of the legs may give rise to a "stork leg" or "inverted champagne bottle" appearance. Weakness in the hands and forearms occurs in many people as the disease progresses.
Loss of touch sensation in the feet, ankles and legs, as well as in the hands, wrists and arms occur with various types of the disease. Early and late onset forms occur with 'on and off' painful spasmodic muscular contractions that can be disabling when the disease activates. High-arched feet (pes cavus) or flat-arched feet (pes planus) are classically associated with the disorder. Sensory and proprioceptive nerves in the hands and feet are often damaged, while unmyelinated pain nerves are left intact. Overuse of an affected hand or limb can activate symptoms including numbness, spasm, and painful cramping.
Symptoms and progression of the disease can vary. Involuntary grinding of teeth as well as squinting are prevalent and often go unnoticed by the person affected. Breathing can be affected in some; so can hearing, vision, as well as the neck and shoulder muscles. Scoliosis is common, causing hunching and loss of height. Hip sockets can be malformed. Gastrointestinal problems can be part of CMT, as can difficulty chewing, swallowing, and speaking (due to atrophy of vocal cords). A tremor can develop as muscles waste. Pregnancy has been known to exacerbate CMT, as well as severe emotional stress. Patients with CMT must avoid periods of prolonged immobility such as when recovering from a secondary injury as prolonged periods of limited mobility can drastically accelerate symptoms of CMT.
Pain due to postural changes, skeletal deformations, muscle fatigue and cramping is fairly common in people with CMT. It can be mitigated or treated by physical therapies, surgeries, and corrective or assistive devices. Analgesic medications may also be needed if other therapies do not provide relief from pain. Neuropathic pain is often a symptom of CMT, though, like other symptoms of CMT, its presence and severity varies from case to case. For some people, pain can be significant to severe and interfere with daily life activities. However, pain is not experienced by all people with CMT. When neuropathic pain is present as a symptom of CMT, it is comparable to that seen in other peripheral neuropathies, as well as postherpetic neuralgia and complex regional pain syndrome, among other diseases.
It is characterized by a deficiency in biliary copper excretion that causes deformations in the skeleton. These include projections on the back of the skull (parasagittal bone exostoses arising from the occipital bone—the so-called "occipital horns") as well as deformities of the elbow, radial head dislocation, hammer-shaped lateral ends of the clavicles, and abnormalities of the hips and pelvis.
OHS presents in early to middle childhood. Children may present with features such as:
Theoretically, a mutation in any of the may cause disease, but below are some notable ones, with short description of symptoms:
- Adrenoleukodystrophy; leads to progressive brain damage, failure of the adrenal glands and eventually death.
- Alport syndrome; glomerulonephritis, endstage kidney disease, and hearing loss.
- Androgen insensitivity syndrome; variable degrees of undervirilization and/or infertility in XY persons of either gender
- Barth syndrome; metabolism distortion, delayed motor skills, stamina deficiency, hypotonia, chronic fatigue, delayed growth, cardiomyopathy, and compromised immune system.
- Blue cone monochromacy; low vision acuity, color blindness, photophobia, infantile nystagmus.
- Centronuclear myopathy; where cell nuclei are abnormally located in skeletal muscle cells. In CNM the nuclei are located at a position in the center of the cell, instead of their normal location at the periphery.
- Charcot–Marie–Tooth disease (CMTX2-3); disorder of nerves (neuropathy) that is characterized by loss of muscle tissue and touch sensation, predominantly in the feet and legs but also in the hands and arms in the advanced stages of disease.
- Coffin–Lowry syndrome; severe mental retardation sometimes associated with abnormalities of growth, cardiac abnormalities, kyphoscoliosis as well as auditory and visual abnormalities.
- Fabry disease; A lysosomal storage disease causing anhidrosis, fatigue, angiokeratomas, burning extremity pain and ocular involvement.
- Hunter's Syndrome; potentially causing hearing loss, thickening of the heart valves leading to a decline in cardiac function, obstructive airway disease, sleep apnea, and enlargement of the liver and spleen.
- Hypohidrotic ectodermal dysplasia, presenting with hypohidrosis, hypotrichosis, hypodontia
- Kabuki syndrome; multiple congenital anomalies and mental retardation.
- Spinal and bulbar muscular atrophy; muscle cramps and progressive weakness
- Lesch-Nyhan syndrome; neurologic dysfunction, cognitive and behavioral disturbances including self-mutilation, and uric acid overproduction (hyperuricemia)
- Lowe Syndrome; hydrophthalmia, cataracts, intellectual disabilities, aminoaciduria, reduced renal ammonia production and vitamin D-resistant rickets
- Menkes disease; sparse and coarse hair, growth failure, and deterioration of the nervous system
- Nasodigitoacoustic syndrome; mishaped nose, brachydactyly of the distal phalanges, sensorineural deafness
- Nonsyndromic deafness; hearing loss
- Norrie disease; cataracts, leukocoria along with other developmental issues in the eye
- Occipital horn syndrome; deformations in the skeleton
- Ocular albinism; lack of pigmentation in the eye
- Ornithine transcarbamylase deficiency; developmental delay and mental retardation. Progressive liver damage, skin lesions, and brittle hair may also be seen
- Siderius X-linked mental retardation syndrome; cleft lip and palate with mental retardation and facial dysmorphism, caused by mutations in the histone demethylase PHF8
- Simpson-Golabi-Behmel syndrome; coarse faces with protruding jaw and tongue, widened nasal bridge, and upturned nasal tip
- Spinal muscular atrophy caused by UBE1 gene mutation; weakness due to loss of the motor neurons of the spinal cord and brainstem
- Wiskott-Aldrich syndrome; eczema, thrombocytopenia, immune deficiency, and bloody diarrhea
- X-linked Severe Combined Immunodeficiency (SCID); infections, usually causing death in the first years of life
- X-linked sideroblastic anemia; skin paleness, fatigue, dizziness and enlarged spleen and liver.
Some specific symptoms vary from one type of leukodystrophy to the next but the vast majority of symptoms are shared as the causes for the disease generally have the same effects. Symptoms are dependent on the age of onset, which is predominantly in infancy and early childhood, although the exact time of onset may be difficult to determine. Hyperirritability and hypersensitivity to the environment are common, as well as some tell-tale physical signs including muscle rigidity and a backwards-bent head. Botox therapy is often used to treat patients with spasticity. Juvenile and adult onsets display similar symptoms including a decrease or loss in hearing and vision. While children do experience optic and auditory degeneration, the course of the disease is usually too rapid, causing death relatively quickly, whereas adults may live with these conditions for many years. In children, spastic activity often precedes progressive ataxia and rapid cognitive deterioration which has been described as mental retardation. Epilepsy is commonplace for patients of all ages. More progressed patients show weakness in deglutition, leading to spastic coughing fits due to inhaled saliva. Classic symptomatic progression of juvenile x-linked adrenoleukodystrophy is shown in the 1992 film, "Lorenzo's Oil".
Course and timetable are dependent on the age of onset with infants showing a lifespan of 2–8 years, juveniles 2–10 years and adults typically 10+ years. Adults typically see an extended period of stability followed by a decline to a vegetative state and death. While treatments do exist, most are in the experimental phase and can only promise a halt in the progression of symptoms, although some gene therapies have shown some symptomatic improvement. The debilitating course of the disease has led to numerous philosophical and ethical arguments over experimental clinical trials, patients’ rights and physician-assisted suicide.
X-linked myopathy with excessive autophagy (XMEA) is a rare childhood onset disease characterized by slow progressive vacuolation and atrophy of skeletal muscle. There is no known cardiac or intellectual involvement.
Arts syndrome is a rare metabolic disorder that causes serious neurological problems in males due to a malfunction of the PRPP synthetase 1 enzyme. Arts Syndrome is part of a spectrum of PRPS-1 related disorders with reduced activity of the enzyme that includes Charcot–Marie–Tooth disease and X-linked non-syndromic sensorineural deafness.
Signs and symptoms of this disorder include weak muscle tone (hypotonia), sagging facial features, seizures, intellectual disability, and developmental delay. The patients have brittle hair and metaphyseal widening. In rare cases, symptoms begin later in childhood and are less severe. Affected infants may be born prematurely. Symptoms appear during infancy and are largely a result of abnormal intestinal copper absorption with a secondary deficiency in copper-dependent mitochondrial enzymes. Normal or slightly slowed development may proceed for 2 to 3 months, and then there will be severe developmental delay and a loss of early developmental skills. Menkes Disease is also characterized by seizures, failure to thrive, subnormal body temperature, and strikingly peculiar hair, which is kinky, colorless or steel-colored, and easily broken. There can be extensive neurodegeneration in the gray matter of the brain. Arteries in the brain can also be twisted with frayed and split inner walls. This can lead to rupture or blockage of the arteries. Weakened bones (osteoporosis) may result in fractures.
Occipital horn syndrome (sometimes called X-linked cutis laxa or Ehlers-Danlos type 9) is a mild form of Menkes syndrome that begins in early to middle childhood. It is characterized by calcium deposits in a bone at the base of the skull (occipital bone), coarse hair, loose skin, and joints.
X-linked spinal muscular atrophy type 2 (SMAX2, XLSMA), also known as arthrogryposis multiplex congenita X-linked type 1 (AMCX1), is a rare neurological disorder involving death of motor neurons in the anterior horn of spinal cord resulting in generalised muscle wasting (atrophy). The disease is caused by a mutation in "UBA1" gene and is passed in a X-linked recessive manner by carrier mothers to affected sons.
Affected babies have general muscle weakness, weak cry and floppy limbs; consequently, the condition is usually apparent at or even before birth. Symptoms resemble the more severe forms of the more common spinal muscular atrophy (SMA); however, SMAX2 is caused by a different genetic defect and only genetic testing can correctly identify the disease.
The disorder is usually fatal in infancy or early childhood due to progressive respiratory failure, although survival into teenage years have been reported. As with many genetic disorders, there is no known cure to SMAX2. Appropriate palliative care may be able to increase quality of life and extend lifespan.
Most children with Allan–Herndon–Dudley syndrome have weak muscle tone (hypotonia) and underdevelopment of many muscles (muscle hypoplasia). As they get older, they usually develop joint deformities called contractures, which restrict the movement of certain joints. Abnormal muscle stiffness (spasticity), muscle weakness, and involuntary movements of the arms and legs also limit mobility. As a result, many people with Allan–Herndon–Dudley syndrome are unable to walk independently and become wheelchair-bound by adulthood.
Charcot–Marie–Tooth disease (CMT) is one of the hereditary motor and sensory neuropathies, a group of varied inherited disorders of the peripheral nervous system characterized by progressive loss of muscle tissue and touch sensation across various parts of the body. Currently incurable, this disease is the most commonly inherited neurological disorder, and affects approximately 1 in 2,500 people. CMT was previously classified as a subtype of muscular dystrophy.
Dejerine–Sottas disease, also known as Dejerine–Sottas syndrome, Dejerine–Sottas neuropathy, progressive hypertrophic interstitial polyneuropathy of childhood and onion bulb neuropathy (and, "hereditary motor and sensory polyneuropathy type III" and "Charcot–Marie–Tooth disease type 3"), is a hereditary neurological disorder characterised by damage to the peripheral nerves and resulting progressive muscle wasting. The condition is caused by mutations in a various genes and currently has no known cure.
The disorder is named for Joseph Jules Dejerine and Jules Sottas, French neurologists who first described it.
Occipital horn syndrome (OHS), formerly considered a variant of Ehlers-Danlos syndrome, is an X-linked recessive connective tissue disorder. It is caused by a deficiency in the transport of the essential mineral copper, associated with mutations in the ATP7A gene. Only about 2/3 of children with OHS are thought to have genetically inherited the disorder; the other 1/3 do not have the disease in their family history. Since the disorder is X-linked recessive the disease affects more males. This is because they do not have a second X chromosome, unlike females, so essentially are lacking the 'backup' copy with proper function. Females are much more likely to be carriers only. For a female to be affected they must carry two defective X chromosomes, not just one. The disorder is considered a milder variant of Menkes disease.
A genetic disorder is a genetic problem caused by one or more abnormalities in the genome, especially a condition that is present from birth (congenital). Most genetic disorders are quite rare and affect one person in every several thousands or millions.
Genetic disorders may be hereditary, passed down from the parents' genes. In other genetic disorders, defects may be caused by new mutations or changes to the DNA. In such cases, the defect will only be passed down if it occurs in the germ line. The same disease, such as some forms of cancer, may be caused by an inherited genetic condition in some people, by new mutations in other people, and mainly by environmental causes in other people. Whether, when and to what extent a person with the genetic defect or abnormality will actually suffer from the disease is almost always affected by the environmental factors and events in the person's development.
Some types of recessive gene disorders confer an advantage in certain environments when only one copy of the gene is present.
The signs and symptoms in glycogen storage disease type IX include:
- Enlarged liver
- Slowed growth
- Motor development delay (mild)
- Low blood sugar accompanied by ketosis
- Lack of muscle tone
Most of these signs and symptoms diminish as adulthood sets in.
Due to the wide range of genetic disorders that are presently known, diagnosis of a genetic disorder is widely varied and dependent of the disorder. Most genetic disorders are diagnosed at birth or during early childhood, however some, such as Huntington's disease, can escape detection until the patient is well into adulthood.
The basic aspects of a genetic disorder rests on the inheritance of genetic material. With an in depth family history, it is possible to anticipate possible disorders in children which direct medical professionals to specific tests depending on the disorder and allow parents the chance to prepare for potential lifestyle changes, anticipate the possibility of stillbirth, or contemplate termination. Prenatal diagnosis can detect the presence of characteristic abnormalities in fetal development through ultrasound, or detect the presence of characteristic substances via invasive procedures which involve inserting probes or needles into the uterus such as in amniocentesis.
Gerodermia osteodysplastica is characterized by symptoms and features which affect the connective tissues, skin and skeletal system.
These are: wrinkly, loose skin over the face, abdomen, and extremites (hands, feet) on the dorsal sides usually worsened by chronic joint laxity and hyperextensibility; fragmented elastic fibers of the skin that are reduced in number, with disorientation of collagen fibers; osteopenia and osteoporosis, with associated fractures; malar hypoplasia (underdeveloped cheek bone), maxillary hypoplasia (underdeveloped upper jaw), mandibular prognathism (protrusion of the lower jaw and chin), bowed long bones, platyspondyly (flattened spine) related to vertebral collapse; kyphoscoliosis (scoliosis with kyphosis, or "hunch back"), metaphyseal peg (an unusual outgrowth of metaphyseal tissue which protrudes into the epiphyseal region of the bone, near the knee); and the overall physical effects and facial appearance of dwarfism with premature aging.
Other features and findings include: intrauterine growth retardation, congenital hip dislocations, winged scapulae (shoulder blades), pes planus (fallen arches), pseudoepiphyses of the second metacarpals (upper bone of the fingers), hypotelorism (close-set eyes), malformed ears,
developmental delay,
failure to thrive and abnormal electroencephalograph (EEG) readings.
Dental and orthodontal abnormalities in addition to maxillary hypoplasia and mandibular prognathism have also been observed in gerodermia osteodysplastica. Including malocclusion of the dental arches (the maxilla and mandible), radiological findings in some cases have indicated significant overgrowth of the mandibular premolar and molar roots;
hypercementosis (overproduction of cementum) of the molars and maxillary incisors; enlarged, funnel-shaped mandibular lingula (spiny structures on the ramus of the mandible); and a radiolucent effect on portions of many teeth, increasing their transparency to x-rays.
Spinal muscular atrophy with lower extremity predominance (SMA-LED) is an extremely rare neuromuscular disorder of infants characterised by severe progressive muscle atrophy which is especially prominent in legs.
The disorder is associated with a genetic mutation in the "DYNC1H1" gene (the gene responsible also for one of the axonal types of Charcot–Marie–Tooth disease) and is inherited in an autosomal dominant manner. As with many genetic disorders, there is no known cure to SMA-LED.
The condition was first described in a multi-generational family by Walter Timme in 1917. Its linkage to the "DYNC1H1" gene was discovered in 2010 by M. B. Harms, et al., who also proposed the current name of the disorder.
The skin lesions evolve through characteristic stages:
1. blistering (from birth to about four months of age),
2. a wart-like rash (for several months),
3. swirling macular hyperpigmentation (from about six months of age into adulthood), followed by
4. linear hypopigmentation.
Alopecia, hypodontia, abnormal tooth shape, and dystrophic nails are observed. Some patients have retinal vascular abnormalities predisposing to retinal detachment in early childhood. Cognitive delays/mental retardation are occasionally seen.
Discolored skin is caused by excessive deposits of melanin (normal skin pigment).
Most newborns with IP will develop discolored skin within the first two weeks.
The pigmentation involves the trunk and extremities, is slate-grey, blue or brown, and is distributed in irregular marbled or wavy lines.
The discoloration sometimes fades with age.
Neurological problems can include: cerebral atrophy, the formation of small cavities in the central white matter of the brain, and the loss of neurons in the cerebellar cortex.
About 20% of children with IP will have slow motor development, muscle weakness in one or both sides of the body, mental retardation, and seizures.
They are also likely to have visual problems, which can include: crossed eyes, cataracts, and severe visual loss.
Dental problems are common, and include missing or peg-shaped teeth - patients with IP often keep milk teeth into adult life.
Breast anomalies can occur in 1% of patients; anomalies can include hypoplasia and supernumerary nipples.
Skeletal and structural anomalies can occur in approximately 14% of patients, including:
- Somatic asymmetry,
- Hemivertebrae,
- Scoliosis,
- Spina bifida,
- Syndactyly,
- Acheiria (congenital absence of the hands - note: other limbs may be affected),
- Ear anomalies,
- Extra ribs,
- Skull deformities,
- Primary pulmonary hypertension,
- Cardiopulmonary failure