Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Perinatal mortality (PNM), also perinatal death, refers to the death of a fetus or neonate and is the basis to calculate the perinatal mortality rate. Variations in the precise definition of the perinatal mortality exist specifically concerning the issue of inclusion or exclusion of early fetal and late neonatal fatalities. The World Health Organization defines perinatal mortality as the "number of stillbirths and deaths in the first week of life per 1,000 total births, the perinatal period commences at 22 completed weeks (154 days) of gestation and ends seven completed days after birth", but other definitions have been used.
The UK figure is about 8 per 1,000 and varies markedly by social class with the highest rates seen in Asian women. Globally about 2.6 million neonates died in 2013 before the first month of age down from 4.5 million in 1990.
Swelling (especially in the hands and face) was originally considered an important sign for a diagnosis of pre-eclampsia. However, because swelling is a common occurrence in pregnancy, its utility as a distinguishing factor in pre-eclampsia is not high. Pitting edema (unusual swelling, particularly of the hands, feet, or face, notable by leaving an indentation when pressed on) can be significant, and should be reported to a health care provider.
In general, none of the signs of pre-eclampsia are specific, and even convulsions in pregnancy are more likely to have causes other than eclampsia in modern practice. Further, a symptom such as epigastric pain may be misinterpreted as heartburn. Diagnosis, therefore, depends on finding a coincidence of several pre-eclamptic features, the final proof being their regression after delivery.
Preterm birth is the most common cause of perinatal mortality, causing almost 30 percent of neonatal deaths. Infant respiratory distress syndrome, in turn, is the leading cause of death in preterm infants, affecting about 1% of newborn infants. Birth defects cause about 21 percent of neonatal death.
Perinatal asphyxia, neonatal asphyxia or birth asphyxia is the medical condition resulting from deprivation of oxygen to a newborn infant that lasts long enough during the birth process to cause physical harm, usually to the brain. Hypoxic damage can occur to most of the infant's organs (heart, lungs, liver, gut, kidneys), but brain damage is of most concern and perhaps the least likely to quickly or completely heal. In more pronounced cases, an infant will survive, but with damage to the brain manifested as either mental, such as developmental delay or intellectual disability, or physical, such as spasticity.
It results most commonly from a drop in maternal blood pressure or some other substantial interference with blood flow to the infant's brain during delivery. This can occur due to inadequate circulation or perfusion, impaired respiratory effort, or inadequate ventilation. Perinatal asphyxia happens in 2 to 10 per 1000 newborns that are born at term, and more for those that are born prematurely. WHO estimates that 4 million neonatal deaths occur yearly due to birth asphyxia, representing 38% of deaths of children under 5 years of age.
Perinatal asphyxia can be the cause of hypoxic ischemic encephalopathy or intraventricular hemorrhage, especially in preterm births. An infant suffering severe perinatal asphyxia usually has poor color (cyanosis), perfusion, responsiveness, muscle tone, and respiratory effort, as reflected in a low 5 minute Apgar score. Extreme degrees of asphyxia can cause cardiac arrest and death. If resuscitation is successful, the infant is usually transferred to a neonatal intensive care unit.
There has long been a scientific debate over whether newborn infants with asphyxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
There is considerable controversy over the diagnosis of birth asphyxia due to medicolegal reasons. Because of its lack of precision, the term is eschewed in modern obstetrics.
Twin-to-twin transfusion syndrome (TTTS), also known as feto-fetal transfusion syndrome (FFTS) and twin oligohydramnios-polyhydramnios sequence (TOPS) is a complication of disproportionate blood supply, resulting in high morbidity and mortality. It can affect monochorionic multiples, that is, multiple pregnancies where two or more fetuses share a chorion and hence a single placenta. Severe TTTS has a 60–100% mortality rate.
There are 2 major categories of IUGR: symmetrical and asymmetrical. Some conditions are associated with both symmetrical and asymmetrical growth restriction.
Asymmetrical IUGR is more common (70%). In asymmetrical IUGR, there is restriction of weight followed by length. The head continues to grow at normal or near-normal rates (head sparing). A lack of subcutaneous fat leads to a thin and small body out of proportion with the liver. Normally at birth the brain of the fetus is 3 times the weight of its liver. In IUGR, It becomes 5-6 times. In these cases, the embryo/fetus has grown normally for the first two trimesters but encounters difficulties in the third, sometimes secondary to complications such as pre-eclampsia. Other symptoms than the disproportion include dry, peeling skin and an overly-thin umbilical cord. The baby is at increased risk of hypoxia and hypoglycaemia. This type of IUGR is most commonly caused by extrinsic factors that affect the fetus at later gestational ages. Specific causes include:
- Chronic high blood pressure
- Severe malnutrition
- Genetic mutations, Ehlers–Danlos syndrome
HELLP syndrome is defined as hemolysis (microangiopathic), elevated liver enzymes (liver dysfunction), and low platelets (thrombocytopenia). This condition may occur in 10–20% of patients with severe pre-eclampsia and eclampsia and is associated with increased maternal and fetal morbidity and mortality. In 50% of instances, HELLP syndrome develops preterm, while 20% of cases develop in late gestation and 30% during the post-partum period.
As a result of sharing a single placenta, the blood supplies of monochorionic twin fetuses can become connected, so that they share blood circulation: although each fetus uses its own portion of the placenta, the connecting blood vessels within the placenta allow blood to pass from one twin to the other. It is thought that most monochorionic placentae have these "shared connections" that cross the placenta, with the net flow volumes being equal between them. This state is sometimes referred to as "flow balance". Depending on the number, type and direction of the interconnecting blood vessels (anastomoses), blood can be transferred disproportionately from one twin (the "donor") to the other (the "recipient"), due to a state of "flow imbalance" imparted by new blood vessel growth across the placental "equator", the line that divides each baby's proportion of the shared placenta. This state of transfusion causes the donor twin to have decreased blood volume, retarding the donor's development and growth, and also decreased urinary output, leading to a lower than normal level of amniotic fluid (becoming oligohydramnios). The blood volume of the recipient twin is increased, which can strain the fetus's heart and eventually lead to heart failure, and also higher than normal urinary output, which can lead to excess amniotic fluid (becoming polyhydramnios).
TTTS usually develops during the period of peak placental growth, starting in week 16 and proceeding through week 25; after this point, the placenta's growth decelerates, essentially stopping just after week 30. While TTTS has occasionally been detected beyond this timepoint, it is thought that its occurrence beyond week 30 may be due to a placental embolism that upsets the flow balance of the shared connections between the babies. TTTS is potentially lethal to either or both twins, no matter when it is detected. However, when detected past week 25, emergency delivery may be considered to rescue the babies if the TTTS is severe.
Other than requiring a monochorionic twin (or higher multiple) pregnancy, the underlying causes of TTTS are not known. It is not known to be hereditary or genetic.
Hyperemesis gravidarum is the presence of severe and persistent vomiting, causing dehydration and weight loss. It is more severe than the more common morning sickness and is estimated to affect 0.5–2.0% of pregnant women.
A neonatal stroke is one that occurs in the first 28 days of life, though a late presentation is not uncommon (as contrasted with perinatal stroke, which occurs from 28 weeks gestation through the first 7 days of life). 80% of neonatal strokes are ischemic, and their presentation is varied, making diagnosis very difficult. The most common manifestation of neonatal strokes are seizures, but other manifestations include lethargy, hypotonia, apnoea, and hemiparesis. Seizures can be focal or generalized in nature. Stroke accounts for about 10% of seizures in term neonates.
Neonatal strokes occur in approximately 1 in 4000 births, but this number is likely much higher due to lack of noticeable symptoms at time of birth. They generally present with seizures, but only half to three quarters of cases have identifiable causes. Diagnosis often occurs around 36 hours after onset of neonatal stroke due to the interval between stroke and clinical presentation, if any occurs at all. Neonatal strokes can be confirmed with neuroimaging or neuropathalogical studies, and other various imaging techniques can be used to diagnose neonatal strokes, such as ultrasound, Doppler sonography, computerized tomography (CT) scan, CT angiography, and multimodal MR.
Gestational diabetes is when a woman without diabetes develops high blood sugar levels during pregnancy.
Low birth weight (LBW) is defined by the World Health Organization as a birth weight of a
infant of 2,499 g or less, regardless of gestational age. Subcategories include very low birth weight (VLBW), which is less than 1500 g (3 pounds 5 ounces), and extremely low birth weight (ELBW), which is less than 1000 g (2 pounds 3 ounces). Normal weight at term delivery is 2500–4200 g (5 pounds 8 ounces – 9 pounds 4 ounces).
There are common factors which may cause a woman to deliver rapidly. These factors include:
1. A multipara with relaxed pelvic or perineal floor muscles may have an extremely short period of expulsion.
2. A multipara with unusually strong, forceful contractions. Two to three powerful contractions may cause the baby to appear with considerable rapidity.
3. Inadequate warning of imminent birth due to absence of painful sensations during labor.
There are several pathologic conditions that can predispose a pregnancy to polyhydramnios. These include a maternal history of diabetes mellitus, Rh incompatibility between the fetus and mother, intrauterine infection, and multiple pregnancies.
During the pregnancy, certain clinical signs may suggest polyhydramnios. In the mother, the physician may observe increased abdominal size out of proportion for her weight gain and gestation age, uterine size that outpaces gestational age, shiny skin with stria (seen mostly in severe polyhydramnios), dyspnea, and chest heaviness. When examining the fetus, faint fetal heart sounds are also an important clinical sign of this condition.
Precipitate delivery refers to a delivery which results after an unusually rapid labor (combined 1st stage and second stage duration is <2hrs) and culminates in the rapid, spontaneous expulsion of the infant. Delivery often occurs without the benefit of asepsis.
In most cases, the exact cause cannot be identified. A single case may have one or more causes, including intrauterine infection (TORCH), rh-isoimmunisation, or chorioangioma of the placenta. In a multiple gestation pregnancy, the cause of polyhydramnios usually is twin-to-twin transfusion syndrome. Maternal causes include cardiac problems, kidney problems, and maternal diabetes mellitus, which causes fetal hyperglycemia and resulting polyuria (fetal urine is a major source of amniotic fluid).
A recent study distinguishes between mild and severe polyhydramnios and showed that Apgar score of less than 7, perinatal death and structural malformations only occurred in women with severe polyhydramnios.
In another study, all patients with polyhydramnios, that had a sonographically normal fetus, showed no chromosomal anomalies.
but these anomalies include:
- gastrointestinal abnormalities such as esophageal atresia & duodenal atresia (causing inability to swallow amniotic fluid), anencephaly, facial cleft, neck masses, tracheoesophageal fistula, and diaphragmatic hernias. An annular pancreas causing obstruction may also be the cause.
- Bochdalek's hernia, in which the pleuro-peritoneal membranes (especially the left) will fail to develop & seal the pericardio- peritoneal canals. This results in the stomach protrusion up into the thoracic cavity, and the fetus is unable to swallow sufficient amounts of amniotic fluid.
- fetal renal disorders that result in increased urine production during pregnancy, such as in antenatal Bartter syndrome. Molecular diagnosis is available for these conditions.
- neurological abnormalities such as anencephaly, which impair the swallowing reflex. Anencephaly is failure of close of the rostral neuropore (rostral neural tube defect). If the rostral neuropore fails to close there will be no neural mechanism for swallowing.
- chromosomal abnormalities such as Down syndrome and Edwards syndrome (which is itself often associated with GI abnormalities)
- Skeletal dysplasia, or dwarfism. There is a possibility of the chest cavity not being large enough to house all of the baby's organs causing the trachea and esophagus to be restricted, not allowing the baby to swallow the appropriate amount of amniotic fluid.
- sacrococcygeal teratoma
The signs and symptoms of a vertically transmitted infection depend on the individual pathogen. It may cause subtle signs such as a influenza-like illness and may not even be noticed by the mother during the pregnancy. In such cases, the effects may be seen first at birth.
Symptoms of a vertically transmitted infection may include fever and flu like symptoms. The newborn is often small for gestational age. A petechial rash on the skin may be present, with small reddish or purplish spots due to bleeding from capillaries under the skin. An enlarged liver and spleen (hepatosplenomegaly) is common, as is jaundice. However, jaundice is less common in hepatitis B because a newborn's immune system is not developed well enough to mount a response against liver cells, as would normally be the cause of jaundice in an older child or adult. Hearing impairment, eye problems, mental retardation, autism, and death can be caused by vertically transmitted infections. The mother often has a mild infection with few or no symptoms.
The genetic conditions of Aicardi-Goutieres syndrome are possibly present in a similar manner.
LBW is either caused by preterm birth (that is, a low gestational age at birth, commonly defined as younger than 37 weeks of gestation) or the infant being small for gestational age (that is, a slow prenatal growth rate), or a combination of both.
In general, risk factors in the mother that may contribute to low birth weight include young ages, multiple pregnancies, previous LBW infants, poor nutrition, heart disease or hypertension, untreated coeliac disease, drug addiction, alcohol abuse, and insufficient prenatal care. Environmental risk factors include smoking, lead exposure, and other types of air pollutions.
Neonatal hypocalcemia is an abnormal clinical and laboratory hypocalcemia condition that is frequently observed in infants.[1]
Healthy term infants go through a physiological nadir of serum calcium levels at 7.5 - 8.5 mg/dL by day 2 of life. Hypocalcemia is a low blood calcium level. A total serum calcium of less than 8 mg/dL (2mmol/L) or ionized calcium less than 1.2 mmol/L in term neonates is defined as hypocalcemia. In preterm infants, it is defined as less than 7mg/dL (1.75 mmol/L) total serum calcium or less than 4mg/dL (1 mmol/L) ionized calcium. [2]
Both early onset hypocalcemia (presents within 72h of birth) and late onset hypocalcemia (presents in 3-7 days after birth) require calcium supplementation treatment.
A vertically transmitted infection is an infection caused by pathogens (such as bacteria and viruses) that uses mother-to-child transmission, that is, transmission directly from the mother to an embryo, fetus, or baby during pregnancy or childbirth. It can occur when the mother gets an infection as an intercurrent disease in pregnancy. Nutritional deficiencies may exacerbate the risks of perinatal infection.
Circumvallate placenta is a placental morphological abnormalitiy, a subtype of placenta extrachorialis in which the fetal membranes (chorion and amnion) "double back" on the fetal side around the edge of the placenta. After delivery, a circumvallate placenta has a thick ring of membranes on its fetal surface.
The fetal surface is divided into a central depressed zone surrounded by a thickened white ring which is incomplete the ring is situated at varying distance from the margin of the placenta. The ring is composed of a double fold of amnion and chorion with degenerated decidua vera and fibrin in between. Vessels radiate from the cord insertion as far as the ring and then disappear from the view.
Complete circumvallate placenta occurs in approximately 1% of pregnancies. It is diagnosed prenatally by medical ultrasonography, although one 1997 study of prenatal ultrasounds found that "of the normal placentas, 35% were graded as probably or definitely circumvallate by at least one sonologist," and "all sonologists misgraded the case of complete circumvallation as normal." The condition is associated with perinatal complications such as placental abruption, oligohydramnios, abnormal cardiotocography, preterm birth, and miscarriage.
AIDS dysmorphic syndrome, also called HIV embryopathy, is a cluster of facial malformations seen in children with perinatal HIV infection. Its status as a syndrome is disputed by the research community. Common symptoms of perinatal HIV infection include candidiasis, lymphocytic interstitial pneumonitis, hepatosplenomegaly, and lymphadenopathy.
Advanced maternal age, in a broad sense, is the instance of a woman being of an older age at a stage of reproduction, although there are various definitions of specific age and stage of reproduction. The variability in definitions is in part explained by the effects of increasing age occurring as a continuum rather than as a threshold effect.
In Western, Northern, and Southern Europe, first-time mothers are on average 26 to 29 years old, up from 23 to 25 years at the start of the 1970s. In a number of European countries (Spain), the mean age of women at first childbirth has crossed the 30 year threshold.
This process is not restricted to Europe. Asia, Japan and the United States are all seeing average age at first birth on the rise, and increasingly the process is spreading to countries in the developing world like China, Turkey and Iran. In the U.S., the average age of first childbirth was 26 in 2013.
Advanced maternal age is associated with adverse reproductive effects such as increased risk of infertility, and that the children have chromosomal abnormalities. The corresponding paternal age effect is less pronounced.
In present generations it is more common to have children at an older age. Several factors may influence the decisions of parents when having their first baby. Such factors include educational, social and economic status.