Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms of AVM vary according to the location of the malformation. Roughly 88% of people with an AVM are asymptomatic; often the malformation is discovered as part of an autopsy or during treatment of an unrelated disorder (called in medicine an "incidental finding"); in rare cases, its expansion or a micro-bleed from an AVM in the brain can cause epilepsy, neurological deficit, or pain.
The most general symptoms of a cerebral AVM include headaches and epileptic seizures, with more specific symptoms occurring that normally depend on the location of the malformation and the individual. Such possible symptoms include:
- Difficulties with movement coordination, including muscle weakness and even paralysis;
- Vertigo (dizziness);
- Difficulties of speech (dysarthria) and communication, such as aphasia;
- Difficulties with everyday activities, such as apraxia;
- Abnormal sensations (numbness, tingling, or spontaneous pain);
- Memory and thought-related problems, such as confusion, dementia or hallucinations.
Cerebral AVMs may present themselves in a number of different ways:
- Bleeding (45% of cases)
- Acute onset of severe headache. May be described as the worst headache of the patient's life. Depending on the location of bleeding, may be associated with new fixed neurologic deficit. In unruptured brain AVMs, the risk of spontaneous bleeding may be as low as 1% per year. After a first rupture, the annual bleeding risk may increase to more than 5%.
- Seizure or brain seizure (46%) Depending on the place of the AVM, it can cause loss of vision in one place.
- Headache (34%)
- Progressive neurologic deficit (21%)
- May be caused by mass effect or venous dilatations. Presence and nature of the deficit depend on location of lesion and the draining veins.
- Pediatric patients
- Heart failure
- Macrocephaly
- Prominent scalp veins
In the lungs, pulmonary arteriovenous malformations have no symptoms in up to 29% of all cases.
Clinical symptoms of CNS origin include recurrent headaches, focal neurological deficits, hemorrhagic stroke, and seizures, but CCM can also be asymptomatic. The nature and severity of the symptoms depend on the lesion's location.
In the eye, it is known as orbital cavernous hemangioma and is found in women more frequently than men, most commonly between the ages of 20-40. This neoplasm is usually located within the muscle cone, which is lateral to the optic nerve. It is not usually treated unless the patient is symptomatic. Visual impairment happens when the optic nerve is compressed or the extraocular muscles are surrounded.
Cavernous hemangiomas are the most common benign tumors of the liver. Usually one tumor exists, but multiple lesions can occur in the left or right lobe of the liver in 40% of patients. Their sizes can range from a few millimeters to 20 centimetres. Those over 5 cm are often referred to as "giant hemangiomas".
A cerebral arteriovenous malformation (cerebral AVM, CAVM, cAVM) is an abnormal connection between the arteries and veins in the brain—specifically, an arteriovenous malformation in the cerebrum.
Typically not diagnosed until late childhood or later, Bonnet–Dechaume–Blanc syndrome usually presents itself with a combination of central nervous system features (midbrain), ophthalmic features (retina), and facial features. The degree of expression of the syndrome's components varies both clinically and structurally. Common symptoms that lead to diagnosis are headaches, retro-orbital pain and hemianopia.
The ophthalmic features of the Bonnet–Dechaume–Blanc syndrome occur as retinal arteriovenous malformation (AVMs). There are three categories of AVMs that are categorized depending on the severity of the malformation. The first category consists of the patient having small lesions that usually are asymptomatic. The second category, more severe than the first, is when the patient’s malformation is missing a connecting capillary. The missing capillary is meant to serve as a link between an artery and a vein; without it, edemas, hemorrhages, and visual impairments can result. Category three, the most severe, occurs when the patient’s malformations are so severe that the dilated vessels cause no distinction between artery and vein. When the symptoms are this severe, the patient has a significantly increased risk of developing vision loss. Since the retinal lesions categorized vary from large vascular malformations that affect a majority of the retina to malformations that are barely visible, the lesions cause a wide range of symptoms including decrease in visual sharpness, proptosis, pupillary defects, optic degeneration and visual field defects. The most common type of visual field impairment due to AVMs is homonymous hemianopia. Homonymous hemianopia typically presents unilaterally, but bilateral cases have been reported as well.
The extent of the central nervous system (CNS) features/symptoms of Bonnet–Dechaume–Blanc syndrome is highly dependent of the location of the cerebral AVMs and the extent of the malformation. The most common symptom affecting the CNS is an intracranial hemangioma in the midbrain. Along with hemangiomas, the malformations result in severe headaches, cerebral hemorrhages, vomiting, meningism, seizures, acute strokes or progressive neurological deficits due to acute or chronic ischaemia caused by arteriovenous shunting.
The distinguishable facial features that result from Bonnet–Dechaume–Blanc syndrome vary from case to case. A person showing signs of the syndrome may display faint skin discoloration, nevi and angiomas of the skin. Some patients with this disorder also present with high flow arteriovenous malformations of the maxillofacial or mandibular (jaw) regions. Another facial indicator of this disease is malformations affecting the frontal and/or maxillary sinuses.
Central nervous system cavernous hemangioma is a cavernous hemangioma that arises in the central nervous system (CNS). It can be considered to be a variant of hemangioma, and is characterized by grossly large dilated blood vessels and large vascular channels, less well circumscribed, and more involved with deep structures, with a single layer of endothelium and an absence of neuronal tissue within the lesions. These thinly walled vessels resemble sinusoidal cavities filled with stagnant blood. Blood vessels in patients with cerebral cavernous malformations (CCM) can range from a few millimeters to several centimeters in diameter. Most lesions occur in the brain, but any organ may be involved.
The most common signs/symptoms of DAVFs are:
1. Pulsatile tinnitus
2. Occipital bruit
3. Headache
4. Visual impairment
5. Papilledema
Pulsatile tinnitus is the most common symptom in patients, and it is associated with transverse-sigmoid sinus DAVFs. Carotid-cavernous DAVFs, on the other hand, are more closely associated with pulsatile exophthalmos. DAVFs may also be asymptomatic (e.g. cavernous sinus DAVFs).
The most frequently observed problems, related to an AVM, are headaches and seizures, backaches, neckaches and eventual nausea, as the coagulated blood makes its way down to be dissolved in the individual's spinal fluid. It is supposed that 15% of the population, at detection, have no symptoms at all. Other common symptoms are a pulsing noise in the head, progressive weakness and numbness and vision changes as well as debilitating, excruciating pain.
In serious cases, the blood vessels rupture and there is bleeding within the brain (intracranial hemorrhage). Nevertheless, in more than half of patients with AVM, hemorrhage is the first symptom. Symptoms due to bleeding include loss of consciousness, sudden and severe headache, nausea, vomiting, incontinence, and blurred vision, amongst others. Impairments caused by local brain tissue damage on the bleed site are also possible, including seizure, one-sided weakness (hemiparesis), a loss of touch sensation on one side of the body and deficits in language processing (aphasia). Ruptured AVMs are responsible for considerable mortality and morbidity.
AVMs in certain critical locations may stop the circulation of the cerebrospinal fluid, causing accumulation of the fluid within the skull and giving rise to a clinical condition called hydrocephalus. A stiff neck can occur as the result of increased pressure within the skull and irritation of the meninges.
The blockage of cerebrospinal fluid (CSF) flow may also cause a syrinx to form, eventually leading to syringomyelia. Central cord symptoms such as hand weakness, dissociated sensory loss, and, in severe cases, paralysis may occur.
The key features of this syndrome are an enlargement of the fourth ventricle; complete absence of the cerebellar vermis, the posterior midline area of cerebellar cortex responsible for coordination of the axial musculature; and cyst formation near the internal base of the skull. An increase in the size of the fluid spaces surrounding the brain as well as an increase in pressure may also be present. The syndrome can appear dramatically or develop unnoticed.
Symptoms, which often occur in early infancy, include slower motor development and progressive enlargement of the skull. In older children, symptoms of increased intracranial pressure such as irritability, vomiting, and convulsions and signs of cerebellar dysfunction such as unsteadiness and lack of muscle coordination or jerky movements of the eyes may occur. Other symptoms include increased head circumference, bulging at the back of the skull, problems with the nerves that control the eyes, face and neck, and abnormal breathing patterns.
Dandy–Walker syndrome is frequently associated with disorders of other areas of the central nervous system including absence of the corpus callosum, the bundle of axons connecting the two cerebral hemispheres, and malformations of the heart, face, limbs, fingers and toes.
The Dandy–Walker complex is a genetically sporadic disorder that occurs one in every 30,000 live births. Prenatal diagnosis and prognosis of outcomes associated with Dandy–Walker can be difficult. Prenatal diagnosis is possible with ultrasound. Because the syndrome is associated with an increased risk for fetal karyotype abnormalities, amniocentesis can be offered after prenatal diagnosis. There is a relative contraindication of taking Warfarin during pregnancy, as it is associated with an increased risk of Dandy–Walker syndrome if taken during the first trimester.
The DWS malformation is the most severe presentation of the syndrome. The posterior fossa is enlarged and the tentorium is in high position. There is complete agenesis of the cerebellar vermis. There is also cystic dilation of the fourth ventricle, which fills the posterior fossa. This often involves hydrocephalus and complications due to associated genetic conditions, such as Spina Bifida.
Sinus pericranii typically present as soft palpable masses along midline skull, which may fluctuate in size depending on body positioning. Classically, these lesions are not associated with color change of the overlying skin, such as with other vascular lesions such as hemangioma.
Syringomyelia is a chronic progressive degenerative disorder characterized by a fluid-filled cyst located in the spinal cord. Its symptoms include pain, weakness, numbness, and stiffness in the back, shoulders, arms or legs. Other symptoms include headaches, the inability to feel changes in the temperature, sweating, sexual dysfunction, and loss of bowel and bladder control. It is usually seen in the cervical region but can extend into the medulla oblongata and pons or it can reach downward into the thoracic or lumbar segments. Syringomyelia is often associated with Chiari malformation type I and is commonly seen between the C-4 and C-6 levels. The exact development of syringomyelia is unknown but many theories suggest that the herniated tonsils in Chiari malformation type I form a "plug" which does not allow an outlet of CSF from the brain to the spinal canal. Syringomyelia is present in 25% of patients with Chiari malformation.
Bonnet–Dechaume–Blanc syndrome, also known as Wyburn-Mason syndrome, is a rare congential arteriovenous malformation of the brain, retina or facial nevi. The syndrome has a number of possible symptoms and can affect the skin, bones, kidneys, muscles, and gastrointestinal tract. When the syndrome affects the brain, people can experience severe headaches, seizures, acute stroke, meningism and progressive neurological deficits due to acute or chronic ischaemia caused by arteriovenous shunting.
As for the retina, the syndrome causes retinocephalic vascular malformations that tend to be present with intracranial hemorrhage and lead to decreased visual acuity, proptosis, pupillary defects, optic atrophy, congestion of bulbar conjunctiva, and visual field defects. Retinal lesions can be unilateral and tortuous, and symptoms begin to appear in the second and third decades of life.
The syndrome can present cutaneous lesions, or skin with different texture, thickness, and color, usually on the face. The facial features caused by the syndrome vary from slight discoloration to extensive nevi and angiomas of the skin. In some cases, the frontal and maxillary sinus can present problems in the subject due to the syndrome.
There have only been 52 reported cases of patients with Bonnet–Dechaume–Blanc syndrome as of 2012. Symptoms are rarely noticed in children and the syndrome is often diagnosed in late childhood or early adulthood when visual impairment is noticed. Fluorescein angiography is commonly used to diagnose the syndrome.
There have been several methods in treating patients who display Bonnet–Dechaume–Blanc syndrome. However, which method seems to work the most is within argument. Patients with intracranial lesions have been treated with surgical intervention and in some cases, this procedure has been successful. Other treatments include embolization, radiation therapy, and continued observation.
With limited research on Bonnet–Dechaume–Blanc syndrome, researchers have focused on the clinical and radiological findings rather than how to manage this rare and non-heritable syndrome.
Most commonly found adjacent to dural sinuses in the following locations:
1. Transverse (lateral) sinus, left-sided slightly more common than right
2. Intratentorial
3. From the posterior cavernous sinus, usually draining to the transverse or sigmoid sinuses
4. Vertebral artery (posterior meningeal branch)
Vascular malformation is a collective term for different disorders of the vasculature (errors in vascular development). It can be a disorder of the capillaries, arteries, veins and lymphatic vessels or a disorder of a combination of these (lesions are named based on the primary vessel that is malformed). A vascular malformation consists of a cluster of deformed vessels, due to an error in vascular development (dysmorphogenesis). However, endothelial turnover is stable in these defects. Congenital vascular malformations are always already present at birth, although they are not always visible. In contrast to vascular tumors, vascular malformations do not have a growth phase, nor an involution phase. Vascular malformations tend to grow proportionately with the child. Vascular malformations never regress, but persist throughout life.
Vascular malformations can be divided into slow-flow, fast-flow and complex-combined types.
Vascular tumors, often referred to as hemangiomas, are the most common tumors in infants, occurring in 1-2%. Prevalence is even higher (10%) in premature infants of very low birth weight. Vascular tumors are characterized by overgrowth of normal vessels, which show increased endothelial proliferation. It can be present at birth, but often appears within a couple of weeks after birth or during infancy. There are different kinds of vascular tumors, but the 4 most common types are: infantile hemangioma, congenital hemangioma, kaposiform hemangioendothelioma and pyogenic granuloma.
Prognosis depends on the size and location of the tumour, untreated angiomatosis may lead to blindness and/ or permanent brain damage. Death may occur, with complications in the kidney or brain.
Sinus pericranii (SP) is a rare disorder characterized by a congenital (or occasionally, acquired) epicranial venous malformation of the scalp. Sinus pericranii is an abnormal communication between the intracranial and extracranial venous drainage pathways. Treatment of this condition has mainly been recommended for aesthetic reasons and prevention of hemorrhage.
It is a vascular malformation wherein blood vessels proliferate along with accompanying mature fat and fibrous tissue, lymphatics and sometimes nerves. They may involve skin, subcutaneous tissue, skeletal muscle and occasionally bone.
A small, unchanging aneurysm will produce few, if any, symptoms. Before a larger aneurysm ruptures, the individual may experience such symptoms as a sudden and unusually severe headache, nausea, vision impairment, vomiting, and loss of consciousness, or the individual may experience no symptoms at all.
CCF symptoms include bruit (a humming sound within the skull due to high blood flow through the arteriovenous fistula), progressive visual loss, and pulsatile proptosis or progressive bulging of the eye due to dilatation of the veins draining the eye. Pain is the symptom that patients often find the most difficult to tolerate.
Patients usually present with sudden or insidious onset of redness in one eye, associated with progressive proptosis or bulging.
They may have a history of similar episodes in the past.
Microaneurysms, also known as Charcot-Bouchard aneurysms, typically occur in small blood vessels (less than 300 micrometre diameter), most often the lenticulostriate vessels of the basal ganglia, and are associated with chronic hypertension. Charcot–Bouchard aneurysms are a common cause of intracranial hemorrhage.