Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The characteristic symptom of Costeff syndrome is the onset of progressively worsening eyesight caused by degeneration of the optic nerve (optic atrophy) within the first few years of childhood, with the majority of affected individuals also developing motor disabilities later in childhood. Occasionally, people with Costeff syndrome may also experience mild cognitive disability.
It is type of 3-methylglutaconic aciduria, the hallmark of which is an increased level in the urinary concentrations of 3-methylglutaconic acid and 3-methylglutaric acid; this can allow diagnosis as early as at one year of age.
Those with Costeff syndrome typically experience the first symptoms of visual deterioration within the first few years of childhood, which manifests as the onset of progressively decreasing visual acuity. This decrease tends to continue with age, even after childhood.
The majority of people with Costeff syndrome develop movement problems and motor disabilities later in childhood, the two most significant of which are choreoathetosis and spasticity. The former causes involuntary erratic, jerky, and twisting movements (see chorea and athetosis), whereas the latter causes twitches and spastic tendencies.
These two symptoms are often severe enough to seriously disable an individual; among 36 people with Costeff syndrome, 17 experienced major motor disability as a result of choreoathetosis, and 12 experienced spasticity-related symptoms severe enough to do the same.
Ataxia (loss of muscle coordination) and speech impairment caused by dysarthria also occur in roughly 50% of cases, but are rarely seriously disabling.
Some individuals with Costeff disease also display mild cognitive impairment, though such cases are relatively infrequent.
Costeff syndrome, or 3-methylglutaconic aciduria type III, is a genetic disorder caused by mutations in the "OPA3" gene. It is typically associated with the onset of visual deterioration (optic atrophy) in early childhood followed by the development of movement problems and motor disability in later childhood, occasionally along with mild cases of cognitive deficiency. The disorder is named after Hanan Costeff, the doctor who first described the syndrome in 1989.
Symptoms begin in infancy and include:
- hypotonia
- areflexia
- amyotrophy
- variable degrees of dysgenesis of the corpus callosum
- mild to severe intellectual and developmental delay
- psychiatric problems including paranoid delusions, depression, hallucinations and autistic-like behavior
Patients typically complain of muscle stiffness that can continue to focal weakness. This muscle stiffness cannot be walked off, in contrast to myotonia congenita. These symptoms are increased (and sometimes induced) in cold environments. For example, some patients have reported that eating ice cream leads to a stiffening of the throat. For other patients, exercise consistently induces symptoms of myotonia or weakness. Typical presentations of this are during squatting or repetitive fist clenching. Some patients also indicate that specific foods are able to induce symptoms of paramyotonia congenita. Isolated cases have reported that carrots and watermelon are able to induce these symptoms. The canonical definition of this disorder precludes permanent weakness in the definition of this disorder. In practice, however, this has not been strictly adhered to in the literature.
Andermann syndrome also known as agenesis of corpus callosum with neuronopathy (ACCPN), Charlevoix disease among others is a very rare neurodegenerative genetic disorder that damages the nerves used to control muscles and related to sensation, and is often associated with agenesis of the corpus collosum.
It was first described by Eva Andermann et al. in 1972.
Paramyotonia congenita (PC), also known as paramyotonia congenita of von Eulenburg or Eulenburg disease, is a rare congenital autosomal dominant neuromuscular disorder characterized by “paradoxical” myotonia. This type of myotonia has been termed paradoxical because it becomes worse with exercise whereas classical myotonia, as seen in myotonia congenita, is alleviated by exercise. PC is also distinguished as it can be induced by cold temperatures. Although more typical of the periodic paralytic disorders, patients with PC may also have potassium-provoked paralysis. PC typically presents within the first decade of life and has 100% penetrance. Patients with this disorder commonly present with myotonia in the face or upper extremities. The lower extremities are generally less affected. While some other related disorders result in muscle atrophy, this is not normally the case with PC. This disease can also present as hyperkalemic periodic paralysis and there is debate as to whether the two disorders are actually distinct.
Males show more serious symptoms than females affected by this disorder.
The symptoms for males are:
1. Profound sensorineural hearing loss i.e, a complete or almost complete loss of hearing caused by abnormalities in the inner ear.
2. Weak muscle tone - Hypotonia.
3. Impaired muscle coordination - Ataxia.
4. Developmental delay.
5. Intellecual disability.
6. Vision loss caused by optic nerve atrophy in early childhood.
7. Peripheral neuropathy.
8. Recurrent infections, especially in the respiratory system.
9. Muscle weakness caused by recurrent infections.
Symptoms for females:
Very rarely seen hearing loss that begins in adulthood (age > 20 years) combined with ataxia and neuropathy. Optic atrophy and retinitis pigmentosa observed in some cases too.
Most patients with ML IV show psychomotor retardation (i.e., delayed development of movement and coordination), corneal opacity, retinal degeneration and other ophthalmological abnormalities. Other symptoms include agenesis of the corpus callosum, iron deficiency resulting from an absence of acid secretion in the stomach, achlorhydria. Achlorhydria in these patients results in an increase in blood gastrin levels. These symptoms typically manifest early in life (within the first year). After disease onset there occurs a period of stability, typically lasting two to three decades during which very little disease progression occurs.
Musculoskeletal abnormalities affecting the skull include Sphenoid bone dysplasia, Congenital Hydrocephalus and associated neurologic impairment. These abnormalities are non-progressive and may be diagnosed in the fetus or at birth.
Disorders affecting the spine include:
- In NF-1, there can be a generalized abnormality of the soft tissues in the fetus, which is referred to as mesodermal dysplasia, resulting in maldevelopment of skeletal structures.
- Meningoceles and formation of cystic diverticula of the dura of the spine, unrelated to Spina bifida
- Radiographically, Dural ectasia can lead to scalloping of the posterior vertebral bodies and to the formation of cystic diverticula of the dura of the spine (termed meningoceles. This meningocele is not related to spina bifida).
- Focal scoliosis and/or kyphosis are the most common skeletal manifestation of NF-1, occurring in 20% of affected patients. Approximately 25% of patients will require corrective surgery.
Skeletal muscle weakness and motor control deficits
Deficits in motor function in NF-1 have been long recognised and have been historically attributed to nerve dysfunction. In recent years however, studies suggest NF-1 is associated with a primary problem in muscle function (myopathy).
Clinical findings in people with NF-1 include:
- Reduced skeletal muscle size
- Reduced exercise capacity
- Muscle weakness (The most recent study reports between 30–50% reduced upper and lower limb muscle strength in NF-1 children compare with matched controls ).
Studies in genetically modified mice have thus far confirmed that the NF1 gene is vital for normal muscle development and metabolism. Knockout of the NF1 gene in muscle results in deregulated lipid metabolism and muscle weakness.
It is interesting to note that NF-1 is a disease in the RASopathy family of diseases, which include Costello Syndrome, Noonan Syndrome, and Cardiofaciocutaneous syndrome. The RASopathies also present with skeletal muscle weakness. It is likely that impaired muscle function in these disorders is linked to altered Ras/MAPK signalling, however, the precise molecular mechanisms remain unknown.
Type 1 usually begins somewhere in the first three to 18 months of age and in considered the most severe of the three types. Symptoms include:
- Coarse facial features
- Enlarged liver, spleen, and/or heart
- Intellectual disability
- Seizures
- Abnormal bone formation of many bones
- Progressive deterioration of brain and spinal cord
- Increased or decreased perspiration
Patients have no vascular lesions, but have rapid psychomotor regression, severe and rapidly progressing neurologic signs, elevated sodium and chloride excretion in the sweat, and fatal outcome before the sixth year.
The most common complication in patients with NF-1 is cognitive and learning disability. These cognitive problems have been shown to be present in approximately 80% of children with NF-1 and have significant effects on their schooling and everyday life. These cognitive problems have been shown to be stable into adulthood and do not get worse unlike some of the other physical symptoms of NF-1. The most common cognitive problems are with perception, executive functioning and attention. Disorders include:
- Attention deficit hyperactivity disorder has been shown to be present in approximately 38% of children with NF-1.
- Speech and language delays have also been identified in approximately 68% of preschool children with NF1.
- Math deficits.
- Motor deficits are common. Motor deficits due to NF-1 are probably not cerebellar.
- Spatial deficit. Lovastatin, normally used to treat hypercholesterolemia, is currently in phase one of clinical trial (NCT00352599). This drug has been shown to reverse spatial deficits in mice. Simvastatin, a drug similar to lovastatin, did not show benefit on cognitive function or behaviour in two randomized controlled trials in children with NF1.
- Asperger's Syndrome.
Myotonia ("Myo" from Greek; muscle, and "Tonus" from Latin; tension) is a symptom of a small handful of certain neuromuscular disorders characterized by delayed relaxation (prolonged contraction) of the skeletal muscles after voluntary contraction or electrical stimulation.
Myotonia is present in Myotonia congenita, Paramyotonia Congenita and myotonic dystrophy.
Generally, repeated contraction of the muscle can alleviate the myotonia and relax the muscles thus improving the condition, however this is not the case in Paramyotonia congenita. This phenomenon is known as "Warm-Up" and is not to be confused with warming up before exercise, though they may appear similar. Individuals with the disorder may have trouble releasing their grip on objects or may have difficulty rising from a sitting position and a stiff, awkward gait.
Myotonia can affect all muscle groups; however, the pattern of affected muscles can vary depending on the specific disorder involved.
People suffering from disorders involving myotonia can have a life-threatening reaction to certain anaesthetics; one of these conditions occurs when the patient is under anaesthetic and is termed "Malignant hyperthermia".
Type 2 appears when a child is around 18 months of age and in considered milder than Type 1 but still severe. Symptoms include:
- Symptoms similar to Type 1 but milder and progress more slowly.
Neurofibromatosis (NF1) in early life may cause learning and behavior problems – about 60% of children who have NF1 have a mild form of difficulty in school. In terms of signs the individual might have are the following:
- Six or more light brown dermatological spots ("café au lait spots")
- At least two neurofibromas
- At least two growths on the eye's iris
- Abnormal growth of the spine (scoliosis)
Mucolipidosis type IV (ML IV or ML4) is an autosomal recessive lysosomal storage disorder. Individuals with the disorder have many symptoms including delayed psychomotor development and various ocular aberrations. The disorder is caused by mutations in the MCOLN1 gene, which encodes a non-selective cation channel, mucolipin1. These mutations disrupt cellular functions and lead to a neurodevelopmental disorder through an unknown mechanism. Researchers dispute the physiological role of the protein product and which ion it transports.
Arts syndrome is a rare metabolic disorder that causes serious neurological problems in males due to a malfunction of the PRPP synthetase 1 enzyme. Arts Syndrome is part of a spectrum of PRPS-1 related disorders with reduced activity of the enzyme that includes Charcot–Marie–Tooth disease and X-linked non-syndromic sensorineural deafness.
LCCS1 is characterized by total lack of the movements of the fetus, and is detectable at 13th week of pregnancy. It is accompanied by oedema, small chin, small lungs, crooked joints and occasional skin webs of the neck and elbows. The fetus has characteristic pattern of malpositions recognizable even in severely macerated fetuses with club feet and hyperextension of the knees but the elbows and wrists showing flexion contractures.
Neuropathological analysis shows lack of anterior horn motoneurons and severe atrophy of the ventral spinal cord. The skeletal muscles are severely hypoplastic.
Non-progressive early onset ataxia and poor motor learning are the commonest presentation.
Classification systems for malformations of the cerebellum are varied and are constantly being revised as greater understanding of the underlying genetics and embryology of the disorders is uncovered. A classification proposed by Patel S in 2002 divides cerebellar malformations in two broad groups; those with cerebellar hypoplasia and; those with cerebellar dysplasia.
- I. Cerebellar hypoplasia
- A. Focal hypoplasia
- 1. Isolated vermis
- 2. One hemisphere hypoplasia
- B. Generalized hypoplasia
- 1. With enlarged fourth ventricle (“cyst,”), Dandy-Walker continuum
- 2. Normal fourth ventricle (no “cyst”)
- a. With normal pons
- b. With small pons i. Normal foliation
- a) Pontocerebellar hypoplasias of Barth, types I and II
- b) Cerebellar hypoplasias, not otherwise specified
Congenital mirror movement disorder (CMM disorder) is a rare genetic neurological disorder which is characterized by mirrored movement, sometimes referred to as associated or synkinetic movement, most often in the upper extremity of the body. These movements are voluntary intentional movements on one, ipsilateral, side of the body that are mirrored simultaneously by involuntary movements on the contralateral side.
The reproduction of involuntary movement usually happens along the head-tail axis, having a left-right symmetry. For example, if someone were to voluntarily make a fist with their left hand, their right hand would do the same. In most cases, the accompanying contralateral involuntary movements are much weaker than the ipsilateral voluntary ones, although the extent and magnitude of the mirrored movement vary across patients. This disorder has not yet been found to be associated with any other neurologic disease or cognitive disability, and currently, no cures nor means to improve signs or symptoms have been found.
The congenital mirror movements begin in infancy and persist throughout the patient’s life, often with very little improvement, or deterioration. Consequently, patients who do suffer from this movement disorder have serious difficulty carrying out tasks that require manual dexterity or precision, such as playing a two handed musical instrument or typing on a keyboard, for their whole lives. Patients also often experience discomfort or pain in the upper limbs due to prolonged use of the same muscles. Therefore, quality of life can be severely hampered.
CMM disorder’s prevalence in the world is thought to be less than 1 in 1 million people. Because of its rarity, researchers suggest that some mildly affected individuals may never be diagnosed. It is important not to confuse congenital mirror movement disorders, a rare genetically based neurologic disease, with acquired mirror movement disorders that present themselves during one’s lifetime due to other reasons (stroke for example).
This disorder causes neurological problems, including mental retardation, brain atrophy and ventricular dilation, myoclonus, hypotonia, and epilepsy.
It is also associated with growth retardation, megaloblastic anemia, pectus excavatum, scoliosis, vomiting, diarrhea, and hepatosplenomegaly.
Children with the Sanjad Sakati syndrome have a triad of:
a) hypoparathyroidism (with episodes of hypocalcemia, hypocalcemic tetany and hypocalcemic seizures.
b) severe mental retardation and
c) dysmorphism.
Typically, children with this syndrome are born low-birth-weight due to intrauterine growth retardation. At birth, there is dysmorphism, which is later typified into the features described below. The child is stunted, often with demonstrable growth hormone deficiency and has moderate to severe mental retardation, mainly as a consequence of repeated seizures brought on by the low blood ionic calcium levels. The immuno-reactive parathormone levels are low to undetectable, with low calcium and high phosphate levels in the blood.
"Dysmorphism" is most evident on the face, with the following features:
- Long narrow face
- Deep-set, small eyes
- Beaked nose
- Large, floppy ears
- Small head (microcephaly) and
- Thin lips with a long philtrum.
Other features include:
- Stunting
- Small hands and feet with long, tapering fingers and clinodactyly
- Dental anomalies in the form of malalignment and malocclusion
In another study of six patients, the patients were investigated further. They were found to have low levels of IGF-1 and markedly retarded bone age.
Currently, clinical diagnosis of CMM disorder has been based on clinical findings or molecular genetic testing.
"Clinical Findings (Signs and Symptoms)"""":"
- onset of mirror movements in infancy or early childhood
- persistence of mirror movements into and throughout adulthood with the absence of other neurologic disorders
- little improvement nor deterioration of mirror movements over the course of one’s life
- intensity of mirrored movements increasing with the complexity of the voluntary movement
- involuntary mirror movements that are generally of lesser amplitude compared with voluntary movements
- predominant mirror movement in upper limbs, with increasing severity in more distal appendages (fingers)
- inability to perform tasks requiring skilled bimanual coordination
- occasional pain in the upper limbs during prolonged manual activities
- occasional observed subclinical mirroring movement, but detectable with accelerometer gloves
"Molecular genetic testing"":"
- identification of a heterozygous mutant "DCC, DNAL4, or RAD51" gene (single gene test or multi-gene panel)
In most cases, symptoms of NF1 are mild, and individuals live normal and productive lives. In some cases, however, NF1 can be severely debilitating and may cause cosmetic and psychological issues. The course of NF2 varies greatly among individuals. In some cases of NF2, the damage to nearby vital structures, such as other cranial nerves and the brain stem, can be life-threatening. Most individuals with schwannomatosis have significant pain. In some extreme cases the pain will be severe and disabling.