Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms typically are onset in the adult years, although, childhood cases have also been observed. Common symptoms include a loss of coordination which is often seen in walking, and slurred speech. ADCA primarily affects the cerebellum, as well as, the spinal cord. Some signs and symptoms are:
Onset of symptoms usually occur in early adulthood and is characterized by intention tremor, progressive ataxia, convulsions, and myoclonic epileptic jerks.
Tremors usually affect one extremity, primarily the upper limb, and eventually involve the entire voluntary motor system. Overall, the lower extremity is usually disturbed less often than the upper extremity.
Additional features of the syndrome include: an unsteady gait, seizures, muscular hypotonia, reduced muscular coordination, asthenia, adiadochokinesia and errors with estimating range, direction, and force of voluntary movements. Mental deterioration can occur, however it is rare.
Non-progressive congenital ataxia (NPCA) is a non-progressive form of cerebellar ataxia which can occur with or without cerebellar hypoplasia.
SCA6 is typified by progressive and permanent cerebellar dysfunction. These cerebellar signs include ataxia and dysarthria, likely caused by cerebellar atrophy. Prior to diagnosis and the onset of major symptoms, patients often report a feeling of "wooziness" and momentary imbalance when turning corners or making rapid movements. The age at which symptoms first occur varies widely, from age 19 to 71, but is typically between 43 and 52. Other major signs of SCA6 are the loss of vibratory and proprioceptive sensation and nystagmus.
While most patients present with these severe progressive symptoms, others, sometimes within the same family, display episodic non-progressive symptoms more similar to episodic ataxia. Still others present with symptoms common to both SCA6 and familial hemiplegic migraine.
Neuroimaging like MRI is important. However, there was considerable intrafamilial variability regarding neuroimaging, with some individuals showing normal MRI findings. Early individual prognosis of such autosomal recessive cerebellar ataxias is not possible from early developmental milestones, neurological signs, or neuroimaging.
Ramsay Hunt syndrome (RHS) type 1 is a rare, degenerative, neurological disorder characterized by myoclonus epilepsy, intention tremor, progressive ataxia and occasionally cognitive impairment
It has also been alternatively called "dyssynergia cerebellaris myoclonica", "dyssynergia cerebellaris progressiva", dentatorubral degeneration, or Ramsay Hunt cerebellar syndrome.
Autosomal dominant cerebellar ataxia (ADCA) is a form of spinocerebellar ataxia inherited in an autosomal dominant manner. ADCA is a genetically inherited condition that causes deterioration of the nervous system leading to disorder and a decrease or loss of function to regions of the body.
Degeneration occurs at the cellular level and in certain subtypes results in cellular death. Cellular death or dysfunction causes a break or faulty signal in the line of communication from the central nervous system to target muscles in the body. When there is impaired communication or a lack of communication entirely, the muscles in the body do not function correctly. Muscle control complications can be observed in multiple balance, speech, and motor or movement impairment symptoms. ADCA is divided into three types and further subdivided into subtypes known as SCAs (spinocerebellar ataxias).
Classification systems for malformations of the cerebellum are varied and are constantly being revised as greater understanding of the underlying genetics and embryology of the disorders is uncovered. A classification proposed by Patel S in 2002 divides cerebellar malformations in two broad groups; those with cerebellar hypoplasia and; those with cerebellar dysplasia.
- I. Cerebellar hypoplasia
- A. Focal hypoplasia
- 1. Isolated vermis
- 2. One hemisphere hypoplasia
- B. Generalized hypoplasia
- 1. With enlarged fourth ventricle (“cyst,”), Dandy-Walker continuum
- 2. Normal fourth ventricle (no “cyst”)
- a. With normal pons
- b. With small pons i. Normal foliation
- a) Pontocerebellar hypoplasias of Barth, types I and II
- b) Cerebellar hypoplasias, not otherwise specified
Autosomal recessive cerebellar ataxia type 1 (ARCA1) is a condition characterized by progressive problems with movement. Signs and symptoms of the disorder first appear in early to mid-adulthood. People with this condition initially experience impaired speech (dysarthria), problems with coordination and balance (ataxia), or both. They may also have difficulty with movements that involve judging distance or scale (dysmetria). Other features of ARCA1 include abnormal eye movements (nystagmus) and problems following the movements of objects with their eyes. The movement problems are slowly progressive, often resulting in the need for a cane, walker, or wheelchair.
Non-progressive early onset ataxia and poor motor learning are the commonest presentation.
Spinocerebellar ataxia (SCA) is one of a group of genetic disorders characterized by slowly progressive incoordination of gait and is often associated with poor coordination of hands, speech, and eye movements. A review of different clinical features among SCA subtypes was recently published describing the frequency of non-cerebellar features, like parkinsonism, chorea, pyramidalism, cognitive impairment, peripheral neuropathy, seizures, among others. As with other forms of ataxia, SCA frequently results in atrophy of the cerebellum, loss of fine coordination of muscle movements leading to unsteady and clumsy motion, and other symptoms.
The symptoms of an ataxia vary with the specific type and with the individual patient. In general, a person with ataxia retains full mental capacity but progressively loses physical control.
SCA13 is typified by early onset, mildly progressive cerebellar ataxia with accompanying dysarthria, mental retardation, and nystagmus. Symptoms and age of onset can vary slightly according to the causative mutation.
Deep brain stimulation may provide relief from some symptoms of Benedikt syndrome, particularly the tremors associated with the disorder.
Most cases of autosomal recessive cerebellar ataxia are early onset, usually around the age of 20. People with this type of ataxia share many characteristic symptoms including:
- frequent falls due to poor balance
- imprecise hand coordination
- postural or kinetic tremor of extremities or trunk
- dysarthria
- dysphasia
- vertigo
- diplopia
- lower extremity tendon reflexes
- dysmetria
- minor abnormalities in ocular saccades
- attention defects
- impaired verbal working memory and visuospatial skills
- Normal life expectancy
Autosomal recessive ataxias are generally associated with a loss of proprioception and vibration sense. Arreflexia is more common in autosomal recessive ataxia than autosomal dominant ataxias. Also, they tend to have more involvement outside of the nervous system. Mutations in subunit of the mitochondrial DNA polymerase (POLG) have been found to be a potential cause of autosomal recessive cerebellar ataxia.
Acute cerebellar ataxia usually follows 2–3 weeks after an infection. Onset is abrupt. Vomiting may be present at the onset but fever and nuchal rigidity characterestically are absent. Horizontal nystagmus is present is approximately 50% of cases.
- Truncal ataxia with deterioration of gait
- Slurred speech and nystagmus
- Afebrile
Onset : Early childhood
Progression: Chronic progressive
Clinical: Cerebellar ataxia plus syndrome / Optic Atrophy Plus Syndrome
Ocular: Optic atrophy, nystagmus, scotoma, and bilateral retrobulbar neuritis.
Other: Mental retardation, myoclonic epilepsy, spasticity, and posterior column sensory loss. Tremor in some cases.
Musculoskeletal
Contractures, lower limbs, Achilles tendon contractures, Hamstring contractures, Adductor longus contractures
Systemic
Hypogonadotrophic hypogonadism.
The most common first sign of MSA is the appearance of an "akinetic-rigid syndrome" (i.e. slowness of initiation of movement resembling Parkinson's disease) found in 62% at first presentation. Other common signs at onset include problems with balance (cerebellar ataxia) found in 22% at first presentation, followed by genito-urinary problems (9%). For men, the first sign can be erectile dysfunction (inability to achieve or sustain an erection). Women have also reported reduced genital sensitivity. Both men and women often experience problems with their bladders including urgency, frequency, incomplete bladder emptying, or an inability to pass urine (retention). About 1 in 5 MSA patients will fall in their first year of disease.
Spinocerebellar ataxia type 6 (SCA6) is a rare, late-onset, autosomal dominant disorder, which, like other types of SCA, is characterized by dysarthria, oculomotor disorders, peripheral neuropathy, and ataxia of the gait, stance, and limbs due to cerebellar dysfunction. Unlike other types, SCA 6 is not fatal. This cerebellar function is permanent and progressive, differentiating it from episodic ataxia type 2 (EA2) where said dysfunction is episodic. In some SCA6 families, some members show these classic signs of SCA6 while others show signs more similar to EA2, suggesting that there is some phenotypic overlap between the two disorders. SCA6 is caused by mutations in CACNA1A, a gene encoding a calcium channel α subunit. These mutations tend to be trinucleotide repeats of CAG, leading to the production of mutant proteins containing stretches of 20 or more consecutive glutamine residues; these proteins have an increased tendency to form intracellular agglomerations. Unlike many other polyglutamine expansion disorders expansion length is not a determining factor for the age that symptoms present.
The combination of muscular hypotonia and fixed dilated pupils in infancy is suspicious of Gillespie syndrome. Early onset partial aniridia, cerebellar ataxia, and mental retardation are hallmark of syndrome. The iris abnormality is specific and seems pathognomonic of Gillespie syndrome. The aniridia consisting of a superior coloboma and inferior iris hypoplasia, foveomacular dysplasia.
Atypical Gillespie syndrome associated with bilateral ptosis, exotropia, correctopia, iris hypoplasia, anterior capsular lens opacities, foveal hypoplasia, retinal vascular tortuosity, and retinal hypopigmentation.
Neurological signs ar nystagmus, mild craniofacial asymmetry, axial hypotonia, developmental delay, and mild mental retardation. Mariën P did not support the prevailing view of a global mental retardation as a cardinal feature of Gillespie syndrome but primarily reflect cerebellar induced neurobehavioral dysfunctions following disruption of the cerebrocerebellar anatomical circuitry that closely resembles the "cerebellar cognitive and affective syndrome" (CeCAS).
Congenital pulmonary stenosis and helix dysplasia can be associated.
As the disease progresses one of three groups of symptoms predominate.
These are:
1. Parkinsonism (slow, stiff movement, writing becomes small and spidery)
2. Cerebellar dysfunction (difficulty coordinating movement and balance)
3. Autonomic nervous system dysfunction (impaired automatic body functions) including:
Other symptoms such as double vision can occur.
Not all patients experience all of these symptoms.
Some patients (20% in one study) experience significant cognitive impairment as a result of MSA.
It is characterized by the presence of an oculomotor nerve (CN III) palsy and cerebellar ataxia including tremor and involuntary choreoathetotic movements. Neuroanatomical structures affected include CNIII nucleus, Red nucleus, corticospinal tracts, brachium conjunctivum, and the superior cerebellar peduncle decussation. It has a very similar cause, morphology and signs and symptoms to Weber's syndrome; the main difference between the two being that Weber's is more associated with hemiplegia (i.e. paralysis), and Benedikt's with hemiataxia (i.e. disturbed coordination of movements). It is also similar to Claude's syndrome, but is distinguishable in that Benedikt's has more predominant tremor and choreoathetotic movements while Claude's is more marked by the ataxia.
Spinocerebellar ataxia type 13 (SCA13) is a rare autosomal dominant disorder, which, like other types of SCA, is characterized by dysarthria, nystagmus, and ataxia of gait, stance and the limbs due to cerebellar dysfunction. Patients with SCA13 also tend to present with epilepsy, an inability to run, and increased reflexes. This cerebellar dysfunction is permanent and progressive. SCA13 is caused by mutations in KCNC3, a gene encoding a voltage-gated potassium channel K3.3. There are two known mutations in this gene causative for SCA13. Unlike many other types of SCA, these are not polyglutamine expansions but, rather, point mutations resulting in channels with no current or altered kinetics.
Behr syndrome is characterized by the association of early-onset optic atrophy with spinocerebellar degeneration resulting in ataxia, pyramidal signs, peripheral neuropathy and developmental delay.
Although it is an autosomal recessive disorder, heterozygotes may still manifest much attenuated symptoms. Autosomal dominant inheritance also being reported in a family. Recently a variant of OPA1 mutation with phenotypic presentation like Behr syndrome is also described. Some reported cases have been found to carry mutations in the OPA1, OPA3 or C12ORF65 genes which are known causes of pure optic atrophy or optic atrophy complicated by movement disorder.
Typically, episodic ataxia presents as bouts of ataxia induced by startle, stress, or exertion. Some patients also have continuous tremors of various motor groups, known as myokymia. Other patients have nystagmus, vertigo, tinnitus, diplopia or seizures.
An individual displaying MERRFs syndrome will manifest not only a single symptom, but regularly patients display more than one affected body part at a time. It has been observed that patients with MERRF syndrome will primarily display Myoclonus as a first symptom, along with it they can also manifest seizures, cerebellar ataxia and myopathy. Secondary features include dementia, optic atrophy, bilateral deafness, peripheral neuropathy, spasticity or multiple lipomata. Additional symptoms include dementia, optic atrophy, bilateral deafness and peripheral neuropathy, spasticity, lipomatosis, and/or cardiomyopathy with wolff parkinson-white syndrome. Most patients will not exhibit all of these symptoms, however more than one of these symptoms will be present in a patient who has been diagnosed with MERRFS disease. Due to the multi-symptoms presented by the individual, the severity of the syndrome is very difficult to evaluate. Mitochondrial disorders may present at any age, and this holds truth for MERRS, since it forms part of them. Therefore, if a patient is presenting some of these symptoms, the doctor is able to narrow it down to MEERF mitochondrial disorder.