Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptom-producing, or pathological, scotomata may be due to a wide range of disease processes, affecting any part of the visual system, including the retina (in particular its most sensitive portion, the macula), the optic nerve and even the visual cortex. A pathological scotoma may involve any part of the visual field and may be of any shape or size. A scotoma may include and enlarge the normal blind spot. Even a small scotoma that happens to affect central or macular vision will produce a severe visual disability, whereas a large scotoma in the more peripheral part of a visual field may go unnoticed by the bearer because of the normal reduced optical resolution in the peripheral visual field.
Seeing rainbows around lights, especially at night, usually indicates swelling of the cornea. This may occur from a variety of causes which are discussed under Corneal Edema. Cataract can sometimes cause this also.
Colour vision is perceived mainly by the macula, which is the central vision portion of the retina. Thus any disorder affecting the macula may cause a disturbance in color vision. However, about 8% of males and 0.5% of females have some version of "colour blindness" from birth. Usually this is a genetically inherited trait, and is of the "red-green confusion" variety. The reds, browns, olives, and gold may be confused. Purple may be confused with blue, and pastel pinks, oranges, yellows, and greens look similar. Usually both eyes are affected equally.
There are many obscure macular retinal disorders that can lead to a loss of colour vision, and many of these syndromes are inherited as well. There may also be a problem with a generalized loss of vision with these problems as well. Other retinal problems can lead to a temporary disturbance of colour vision, such as Central serous chorioretinopathy, Macular Edema of different causes, and Macular Degeneration.
Certain types of cataract can gradually affect the colour vision, but this is usually not noticed until one cataract is removed. The cataract seems to filter out the colour blue, and everything seems more blue after cataract extraction. Optic nerve disorders such as Optic Neuritis can greatly affect colour vision, with colours seeming washed out during or after an episode.
Common causes of scotomata include demyelinating disease such as multiple sclerosis (retrobulbar neuritis), damage to nerve fiber layer in the retina (seen as cotton wool spots) due to hypertension, toxic substances such as methyl alcohol, ethambutol and quinine, nutritional deficiencies, vascular blockages either in the retina or in the optic nerve, stroke or other brain injury, and macular degeneration, often associated with aging. Scintillating scotoma is a common visual aura in migraine. Less common, but important because they are sometimes reversible or curable by surgery, are scotomata due to tumors such as those arising from the pituitary gland, which may compress the optic nerve or interfere with its blood supply.
Rarely, scotomata are . One important variety of bilateral scotoma may occur when a pituitary tumour begins to compress the optic chiasm (as distinct from a single optic nerve) and produces a bitemporal paracentral scotoma, and later, when the tumor enlarges, the scotomas extend out to the periphery to cause the characteristic bitemporal hemianopsia. This type of visual-field defect tends to be obvious to the person experiencing it but often evades early objective diagnosis, as it is more difficult to detect by cursory clinical examination than the classical or textbook bitemporal peripheral hemianopia and may even elude sophisticated electronic modes of visual-field assessment.
In a pregnant woman, scotomata can present as a symptom of severe preeclampsia, a form of pregnancy-induced hypertension. Similarly, scotomata may develop as a result of the increased intracranial pressure that occurs in malignant hypertension.
The scotoma is also caused by the aminoglycoside antibiotics mainly by Streptomycin.
Migraine headaches may be preceded by a visual "aura", lasting for 20 to 30 minutes, and then proceeding to the headache. Some people, however, experience the aura but do not have a headache. This visual aura can be very dramatic. Classically, a small blind spot appears in the central vision with a shimmering, zig-zag light inside of it. This enlarges, and moves to one side or the other of the vision, over a 20 to 30 minute period. When it is large, this crescent shaped blind spot containing this brightly flashing light can be difficult to ignore, and some people fear that they are having a stroke. In reality, it is generally a harmless phenomenon, except in people who subsequently get the headache of migraine. Since migraine originates in the brain, the visual effect typically involves the same side of vision in each eye, although it may seem more prominent in one eye or the other.
Some people get different variations of this phenomenon, with the central vision being involved, or with the visual effect similar to "heat rising off of a car". Some people describe a "kaleidoscope" effect, with pieces of the vision being missing. All of these variations are consistent with ophthalmic migraine.
Suppression of an eye is a subconscious adaptation by a person's brain to eliminate the symptoms of disorders of binocular vision such as strabismus, convergence insufficiency and aniseikonia. The brain can eliminate double vision by ignoring all or part of the image of one of the eyes. The area of a person's visual field that is suppressed is called the suppression scotoma (with a scotoma meaning, more generally, an area of partial alteration in the visual field). Suppression can lead to amblyopia.
Nobel-prize winner David H. Hubel described suppression in simple terms as follows:
Suppression is frequent in children with anisometropia or strabismus or both. For instance, children with infantile esotropia may alternate with which eye they look, each time suppressing vision in the other eye.
The most common symptoms of cone dystrophy are vision loss (age of onset ranging from the late teens to the sixties), sensitivity to bright lights, and poor color vision. Therefore, patients see better at dusk. Visual acuity usually deteriorates gradually, but it can deteriorate rapidly to 20/200; later, in more severe cases, it drops to "counting fingers" vision. Color vision testing using color test plates (HRR series) reveals many errors on both red-green and blue-yellow plates.
Cerebral polyopia is most often associated with occipital or temporal lobe lesions, as well as occipital lobe epilepsy. This condition is relatively uncommon, thus further research regarding its causes and mechanism has not been performed. Polyopia can be experienced as partial second or multiple images to either side (or in any eccentricity) of an object at fixation. Polyopia occurs when both eyes are open, or when one eye is open, during fixation on a stimulus. Known cases of polyopia provide evidence that, in relation to the stimulus at fixation, multiple images can appear at a constant distance in any direction; gaps in portions of an object at fixation can exist; multiple images can be overlaid vertically, horizontally, or diagonally on top of the stimulus; and the multiple images can appear different sizes, alignments, and complexities. The complexity of the stimulus does not appear to affect the clarity of the multiple images. The physical distance of the stimulus from the patient (near or far) also does not seem to affect the presence of multiple images. However, if the stimulus is swung or moved, multiple images of that object can either be extinguished or transformed into different objects, depending on the severity of the condition.
The onset of polyopia is not immediate upon perception of visual stimuli; rather, it occurs within milliseconds to seconds of fixation upon a stimulus. Polyopia has been described by patients as images “suddenly multiplying.” These multiple images can drift, fade, and disappear, depending on the severity of the condition. These episodes of polyopia can last from seconds to hours. In one specific case, a patient described difficulties reading due to letters “run[ning] together” and momentarily disappearing.
Most cases of polyopia are accompanied by another neurological condition. Polyopia is often accompanied by visual field defects (such as the presence of a scotoma) or transient visual hallucinations. Polyopic images often form in the direction and position of such visual field defects. Current research shows that when stimuli are close to the patient’s scotoma, the latency of polyopic images is much shorter than if the stimuli was far from the scotoma, and there is a higher probability that polyopic images will result.
Many times, an optic pit is asymptomatic and is just an incidental finding on examination of the eye by a physician. However, some patients may present with the symptoms of a posterior vitreous detachment or serous retinal detachment. This is because optic pits are associated with these disorders and are even speculated to be the actual cause of these disorders when they arise in patients with optic pits (see "Associated Retinal Changes" below for a more in-depth discussion on this theory). The most common visual field defects include an enlarged blind spot and a scotoma. Visual acuity is typically not affected by the pit but may get worse if serous detachment of the macula occurs. Metamorphopsia (distorted vision) may then result.
Optic pits were first described in 1882 as dark gray depressions in the optic disc. They may, however, appear white or yellowish instead. They can also range greatly in size (e.g. some can be minuscule while others may be large enough as to occupy most of optic disc surface). Optic pits are associated with other abnormalities of the optic nerve including large optic nerve size, large inferior colobomas of the optic disc, and colobomas of the retina. The optic disc originates from the optic cup when the optic vesicle invaginates and forms an embryonic fissure (or groove). Optic pits may develop due to failure of the superior end of the embryonic fissure to close completely.
A cone dystrophy is an inherited ocular disorder characterized by the loss of cone cells, the photoreceptors responsible for both central and color vision.
A blind spot, scotoma, is an obscuration of the visual field. A particular blind spot known as the "physiological blind spot", "blind point", or "punctum caecum" in medical literature, is the place in the visual field that corresponds to the lack of light-detecting photoreceptor cells on the optic disc of the retina where the optic nerve passes through the optic disc. Because there are no cells to detect light on the optic disc, the corresponding part of the field of vision is invisible. Some process in our brains interpolates the blind spot based on surrounding detail and information from the other eye, so we do not normally perceive the blind spot.
Although all vertebrates have this blind spot, cephalopod eyes, which are only superficially similar, do not. In them, the optic nerve approaches the receptors from behind, so it does not create a break in the retina.
The first documented observation of the phenomenon was in the 1660s by Edme Mariotte in France. At the time it was generally thought that the point at which the optic nerve entered the eye should actually be the most sensitive portion of the retina; however, Mariotte's discovery disproved this theory.
The blind spot is located about 12–15° temporally and 1.5° below the horizontal and is roughly 7.5° high and 5.5° wide.
Optic pit, optic nerve pit, or optic disc pit is a congenital excavation (or regional depression) of the optic disc (also optic nerve head), resulting from a malformation during development of the eye. Optic pits are important because they are associated with posterior vitreous detachments (PVD) and even serous retinal detachments.
Cerebral diplopia or polyopia describes seeing two or more images arranged in ordered rows, columns, or diagonals after fixation on a stimulus. The polyopic images occur monocular bilaterally (one eye open on both sides) and binocularly (both eyes open), differentiating it from ocular diplopia or polyopia. The number of duplicated images can range from one to hundreds. Some patients report difficulty in distinguishing the replicated images from the real images, while others report that the false images differ in size, intensity, or color. Cerebral polyopia is sometimes confused with palinopsia (visual trailing), in which multiple images appear while watching an object. However, in cerebral polyopia, the duplicated images are of a stationary object which are perceived even after the object is removed from the visual field. Movement of the original object causes all of the duplicated images to move, or the polyopic images disappear during motion. In palinoptic polyopia, movement causes each polyopic image to leave an image in its wake, creating hundreds of persistent images (entomopia).
Infarctions, tumors, multiple sclerosis, trauma, encephalitis, migraines, and seizures have been reported to cause cerebral polyopia. Cerebral polyopia has been reported in extrastriate visual cortex lesions, which is important for detecting motion, orientation, and direction. Cerebral polyopia often occurs in homonymous field deficits, suggesting deafferentation hyperexcitability could be a possible mechanism, similar to visual release hallucinations (Charles Bonnet syndrome).
The effects a coloboma has on the vision can be mild or more severe depending on the size and location of the gap. If, for example, only a small part of the iris is missing, vision may be normal, whereas if a large part of the retina or optic nerve is missing, vision may be poor and a large part of the visual field may be missing. This is more likely to cause problems with mobility if the lower visual field is absent. Other conditions can be associated with a coloboma. Sometimes, the eye may be reduced in size, a condition called microphthalmia. Glaucoma, nystagmus, scotoma, or strabismus may also occur.
Most cases of retinal dysplasia in dogs are hereditary. It can involve one or both retinas. Retinal dysplasia can be focal, multifocal, geographic, or accompanied by retinal detachment. Focal and multifocal retinal dysplasia appears as streaks and dots in the central retina. Geographic retinal dysplasia appears as an irregular or horseshoe-shaped area of mixed hyper or hyporeflectivity in the central retina. Retinal detachment occurs with complete retinal dysplasia, and is accompanied by blindness in that eye. Cataracts or glaucoma can also occur secondary to retinal dysplasia. Other causes of retinal dysplasia in dogs include infection with canine adenovirus or canine herpesvirus, or radiation of the eye in newborns.
Micropsia is the most common visual distortion, or dysmetropsia. It is categorized as an illusion in the positive phenomena grouping of abnormal visual distortions.
- Convergence-accommodative micropsia is a physiologic phenomenon in which an object appears smaller as it approaches the subject.
- Psychogenic micropsia can present itself in individuals with certain psychiatric disorders.
- Retinal micropsia is characterized by an increase in the distance between retinal photoreceptors and is associated with decreased visual acuity.
- Cerebral micropsia is a rare form of micropsia that can arise in children with chronic migraines.
- Hemimicropsia is a type of cerebral micropsia that occurs within one half of the visual field.
Heterochromia is classified primarily by onset: as either genetic or acquired.
Although a distinction is frequently made between heterochromia that affects an eye completely or only partially (segmental heterochromia), it is often classified as either genetic (due to mosaicism or congenital) or acquired, with mention as to whether the affected iris or portion of the iris is darker or lighter. Most cases of heterochromia are hereditary, caused by certain diseases and syndromes. Sometimes one eye may change color following disease or injury.
Of all of the visual distortions, micropsia has the largest variety of causes.
Retinal dysplasia is an eye disease affecting the retina of animals and, less commonly, humans. It is usually a nonprogressive disease and can be caused by viral infections, drugs, vitamin A deficiency, or genetic defects. Retinal dysplasia is characterized by folds or rosettes (round clumps) of the retinal tissue.
Acquired heterochromia is usually due to injury, inflammation, the use of certain eyedrops that damages the iris, or tumors.
Hemianopsia or hemianopia is a visual field loss on the left or right side of the vertical midline. It can affect one eye but usually affects both eyes. Homonymous hemianopsia, or homonymous hemianopia, is hemianopic visual field loss on the same side of both eyes. Homonymous hemianopsia occurs because the right half of the brain has visual pathways for the left hemifield of both eyes, and the left half of the brain has visual pathways for the right hemifield of both eyes. When one of these pathways is damaged, the corresponding visual field is lost.
Central serous retinopathy (CSR), also known as central serous chorioretinopathy (CSC or CSCR), is an eye disease which causes visual impairment, often temporary, usually in one eye. When the disorder is active it is characterized by leakage of fluid under the retina that has a propensity to accumulate under the central macula. This results in blurred or distorted vision (metamorphopsia). A blurred or gray spot in the central visual field is common when the retina is detached. Reduced visual acuity may persist after the fluid has disappeared.
The disease is considered of unknown cause. It mostly affects white males in the age group 20 to 50 and occasionally other groups. The condition is believed to be exacerbated by stress or corticosteroid use.
Vitelliform macular dystrophy or vitelliform dystrophy is an irregular autosomal dominant eye disorder which can cause progressive vision loss. This disorder affects the retina, specifically cells in a small area near the center of the retina called the macula. The macula is responsible for sharp central vision, which is needed for detailed tasks such as reading, driving, and recognizing faces. The condition is characterized by yellow (or orange), slightly elevated, round structures similar to the yolk (Latin "vitellus") of an egg.
Patients with idiopathic macular telangiectasia type 1 are typically 40 years of age or older. They may have a coincident history of ischemic vascular diseases such as diabetes or hypertension, but these do not appear to be causative factors.
Macular telangiectasia type 2 usually present first between the ages of 50 and 60 years, with a mean age of 55–59 years. They may present with a wide range of visual impact, from totally asymptomatic to substantially impaired; in most cases however, patients retain functional acuity of 20/200 or better. Metamorphopsia may be a subjective complaint. Due to the development of paracentral scotomota (blind spots), reading ability is impaired early in the disease course. It might be even the first symptom of the disease.
The condition may remain stable for extended periods, sometimes interspersed with sudden decreases in vision. Patients’ loss of visual function is disproportionately worse than the impairment of their visual acuity, which is only mildly affected in many cases. In patients with MacTel, as compared with a reference population, there is a significantly higher prevalence of systemic conditions associated with vascular disease, including history of hypertension, history of diabetes, and history of coronary disease. MacTel does not cause total blindness, yet it commonly causes gradual loss of the central vision required for reading and driving.
Typically a coloboma appears oval or comet shaped with round end towards the centre. There may be a few vessels (retinal or choroidal) at the edges. The surface may have irregular depression.