Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Heterochromia is classified primarily by onset: as either genetic or acquired.
Although a distinction is frequently made between heterochromia that affects an eye completely or only partially (segmental heterochromia), it is often classified as either genetic (due to mosaicism or congenital) or acquired, with mention as to whether the affected iris or portion of the iris is darker or lighter. Most cases of heterochromia are hereditary, caused by certain diseases and syndromes. Sometimes one eye may change color following disease or injury.
Acquired heterochromia is usually due to injury, inflammation, the use of certain eyedrops that damages the iris, or tumors.
Seeing rainbows around lights, especially at night, usually indicates swelling of the cornea. This may occur from a variety of causes which are discussed under Corneal Edema. Cataract can sometimes cause this also.
Colour vision is perceived mainly by the macula, which is the central vision portion of the retina. Thus any disorder affecting the macula may cause a disturbance in color vision. However, about 8% of males and 0.5% of females have some version of "colour blindness" from birth. Usually this is a genetically inherited trait, and is of the "red-green confusion" variety. The reds, browns, olives, and gold may be confused. Purple may be confused with blue, and pastel pinks, oranges, yellows, and greens look similar. Usually both eyes are affected equally.
There are many obscure macular retinal disorders that can lead to a loss of colour vision, and many of these syndromes are inherited as well. There may also be a problem with a generalized loss of vision with these problems as well. Other retinal problems can lead to a temporary disturbance of colour vision, such as Central serous chorioretinopathy, Macular Edema of different causes, and Macular Degeneration.
Certain types of cataract can gradually affect the colour vision, but this is usually not noticed until one cataract is removed. The cataract seems to filter out the colour blue, and everything seems more blue after cataract extraction. Optic nerve disorders such as Optic Neuritis can greatly affect colour vision, with colours seeming washed out during or after an episode.
Migraine headaches may be preceded by a visual "aura", lasting for 20 to 30 minutes, and then proceeding to the headache. Some people, however, experience the aura but do not have a headache. This visual aura can be very dramatic. Classically, a small blind spot appears in the central vision with a shimmering, zig-zag light inside of it. This enlarges, and moves to one side or the other of the vision, over a 20 to 30 minute period. When it is large, this crescent shaped blind spot containing this brightly flashing light can be difficult to ignore, and some people fear that they are having a stroke. In reality, it is generally a harmless phenomenon, except in people who subsequently get the headache of migraine. Since migraine originates in the brain, the visual effect typically involves the same side of vision in each eye, although it may seem more prominent in one eye or the other.
Some people get different variations of this phenomenon, with the central vision being involved, or with the visual effect similar to "heat rising off of a car". Some people describe a "kaleidoscope" effect, with pieces of the vision being missing. All of these variations are consistent with ophthalmic migraine.
An odd-eyed cat is a cat with one blue eye and one eye either green, yellow, or brown. This is a feline form of complete heterochromia, a condition that occurs in some other animals. The condition most commonly affects white-colored cats, but may be found in a cat of any color, provided that it possesses the white spotting gene.
This condition is usually unilateral, and its symptoms vary from none to mild blurring and discomfort. Signs include diffuse iris atrophy and small white keratic precipitates (deposits on the inner surface of the cornea), cells presenting in the anterior chamber as well as the anterior vitreous. Glaucoma and cataract occur frequently.
In flash photographs, odd-eyed cats typically show a red-eye effect in the blue eye, but not in the other eye. This is due to the combined effect of the (normal) presence of a tapetum lucidum in both eyes and the absence of melanin in the blue eye. The tapetum lucidum produces eyeshine in both eyes, but in the non-blue eye a layer of melanin over the tapetum lucidum selectively removes some colors of light.
Most cases of retinal dysplasia in dogs are hereditary. It can involve one or both retinas. Retinal dysplasia can be focal, multifocal, geographic, or accompanied by retinal detachment. Focal and multifocal retinal dysplasia appears as streaks and dots in the central retina. Geographic retinal dysplasia appears as an irregular or horseshoe-shaped area of mixed hyper or hyporeflectivity in the central retina. Retinal detachment occurs with complete retinal dysplasia, and is accompanied by blindness in that eye. Cataracts or glaucoma can also occur secondary to retinal dysplasia. Other causes of retinal dysplasia in dogs include infection with canine adenovirus or canine herpesvirus, or radiation of the eye in newborns.
Fuchs heterochromic iridocyclitis (FHI) is a chronic unilateral uveitis appearing with the triad of heterochromia, predisposition to cataract and glaucoma, and keratitic precipitates on the posterior corneal surface. Patients are often asymptomatic and the disease is often discovered through investigation of the cause of the heterochromia or cataract. Neovascularisation (growth of new abnormal vessels) is possible and any eye surgery, such as cataract surgery, can cause bleeding from the fragile vessels in the atrophic iris causing accumulation of blood in anterior chamber of the eye, also known as hyphema.
Lenticonus (/len·ti·co·nus/ (len″tĭ-ko´nus)) [lens + L. conus, cone] is a rare congenital anomaly of the eye characterized by a conical protrusion on the crystalline lens capsule and the underlying cortex. It can reach a diameter of 2 to 7 mm. The conus may occur anteriorly or posteriorly. If the bulging is spherical, instead of conical, the condition is referred to as "lentiglobus". It produces a decrease in visual acuity and irregular refraction that cannot be corrected by either spectacle or contact lenses.
Biomicroscopically "lenticonus" is characterized by a transparent, localized, sharply demarcated conical projection of the lens capsule and cortex, usually axial in localization. In an early stage, retro-illumination shows an «oil droplet» configuration. Using a narrow slit, the image of a conus is observed. In a more advanced stage associated subcapsular and cortical opacities appear. Retinoscopically the oil droplet produces a pathognomonic scissors movement of the light reflex. This phenomenon is due to the different refraction in the central and the peripheral area of the lens. Ultrasonography also can illustrate the existence of a "lenticonus". A-scan ultrasonography may reveal an increased lens thickness and B- scanultrasonography may show herniated lenticular material, suggestive of a lenticonus. Amblyopia, cataract, strabismus and loss of central fixation may be observed in association with lenticonus posterior. Cataract, flecked retinopathy, posterior polymorphous dystrophy and corneal arcus juvenilis may be encountered in association with lenticonus anterior that occurs as a part of the Alport syndrome.
Exist two distinct types of "lenticonus" based on the face of the lens affected.
Retinal dysplasia is an eye disease affecting the retina of animals and, less commonly, humans. It is usually a nonprogressive disease and can be caused by viral infections, drugs, vitamin A deficiency, or genetic defects. Retinal dysplasia is characterized by folds or rosettes (round clumps) of the retinal tissue.
The most common symptoms of cone dystrophy are vision loss (age of onset ranging from the late teens to the sixties), sensitivity to bright lights, and poor color vision. Therefore, patients see better at dusk. Visual acuity usually deteriorates gradually, but it can deteriorate rapidly to 20/200; later, in more severe cases, it drops to "counting fingers" vision. Color vision testing using color test plates (HRR series) reveals many errors on both red-green and blue-yellow plates.
Monofixation syndrome (MFS) (also: microtropia or microstrabismus) is an eye condition defined by less-than-perfect binocular vision. It is defined by a small angle deviation with suppression of the deviated eye and the presence of binocular peripheral fusion. That is, MFS implies peripheral fusion without central fusion.
Aside the manifest small-angle deviation ("tropia"), subjects with MFS often also have a large-angle latent deviation ("phoria"). Their stereoacuity is often in the range of 3000 to 70 arcsecond, and a small central suppression scotoma of 2 to 5 deg.
A rare condition, MFS is estimated to affect only 1% of the general population. There are three distinguishable forms of this condition: primary constant, primary decompensating, and consecutive MFS. It is believed that primary MFS is a result of a primary sensorial defect, predisposing to anomalous retinal correspondence.
Secondary MFS is a frequent outcome of surgical treatment of congenital esotropia. A study of 1981 showed MFS to result in the vast majority of cases if surgical alignment is reached before the age of 24 months and only in a minority of cases if it is reached later.
MFS was first described by Marshall Parks.
A cone dystrophy is an inherited ocular disorder characterized by the loss of cone cells, the photoreceptors responsible for both central and color vision.
Corneal dystrophy may not significantly affect vision in the early stages. However, it does require proper evaluation and treatment for restoration of optimal vision. Corneal dystrophies usually manifest themselves during the first or second decade but sometimes later. It appears as grayish white lines, circles, or clouding of the cornea. Corneal dystrophy can also have a crystalline appearance.
There are over 20 corneal dystrophies that affect all parts of the cornea. These diseases share many traits:
- They are usually inherited.
- They affect the right and left eyes equally.
- They are not caused by outside factors, such as injury or diet.
- Most progress gradually.
- Most usually begin in one of the five corneal layers and may later spread to nearby layers.
- Most do not affect other parts of the body, nor are they related to diseases affecting other parts of the eye or body.
- Most can occur in otherwise totally healthy people, male or female.
Corneal dystrophies affect vision in widely differing ways. Some cause severe visual impairment, while a few cause no vision problems and are diagnosed during a specialized eye examination by an ophthalmologist. Other dystrophies may cause repeated episodes of pain without leading to permanent loss of vision.
In the clinical setting, the principal difficulties in differential diagnosis arise as a consequence of the very early age at which patients with this condition first present. The clinician must be persistent in examining abduction and adduction, and in looking for any associated palpebral fissure changes or head postures, when attempting to determine whether what often presents as a common childhood squint (note-"squint" is a British term for two eyes not looking in the same direction) is in fact Duane syndrome. Fissure changes, and the other associated characteristics of Duane's such as up or down shoots and globe retraction, are also vital when deciding whether any abduction limitation is the result of Duane's and not a consequence of VI or abducens cranial nerve palsy.
Acquired Duane's syndrome is a rare event occurring after peripheral nerve palsy.
Central serous retinopathy (CSR), also known as central serous chorioretinopathy (CSC or CSCR), is an eye disease which causes visual impairment, often temporary, usually in one eye. When the disorder is active it is characterized by leakage of fluid under the retina that has a propensity to accumulate under the central macula. This results in blurred or distorted vision (metamorphopsia). A blurred or gray spot in the central visual field is common when the retina is detached. Reduced visual acuity may persist after the fluid has disappeared.
The disease is considered of unknown cause. It mostly affects white males in the age group 20 to 50 and occasionally other groups. The condition is believed to be exacerbated by stress or corticosteroid use.
The characteristic features of the syndrome are:
- Limitation of abduction (outward movement) of the affected eye.
- Less marked limitation of adduction (inward movement) of the same eye.
- Retraction of the eyeball into the socket on adduction, with associated narrowing of the palpebral fissure (eye closing).
- Widening of the palpebral fissure on attempted abduction. (N. B. Mein and Trimble point out that this is "probably of no significance" as the phenomenon also occurs in other conditions in which abduction is limited.)
- Poor convergence.
- A head turn to the side of the affected eye to compensate for the movement limitations of the eye(s) and to maintain binocular vision.
While usually isolated to the eye abnormalities, Duane syndrome can be associated with other problems including cervical spine abnormalities Klippel-Feil syndrome, Goldenhar syndrome, heterochromia, and congenital deafness.
A corneal dystrophy can be caused by an accumulation of extraneous material in the cornea, including lipids and cholesterol crystals.
Vitelliform macular dystrophy or vitelliform dystrophy is an irregular autosomal dominant eye disorder which can cause progressive vision loss. This disorder affects the retina, specifically cells in a small area near the center of the retina called the macula. The macula is responsible for sharp central vision, which is needed for detailed tasks such as reading, driving, and recognizing faces. The condition is characterized by yellow (or orange), slightly elevated, round structures similar to the yolk (Latin "vitellus") of an egg.
DLK is predominantly associated with Lasik, as the creation of a flap creates a potential space for cells to accumulate. Individuals with atopic conditions with pre-existing allergic conjunctivitis, or ocular rosacea, are more prone to developing the condition after surgery. Some authors have reported that moderate to severe eye allergies and chronic allergic conjunctivitis are an absolute contraindication to the LASIK procedure. This is in distinction to findings of earlier studies. Keratitis can also occur after photorefractive keratectomy (PRK), although because it occurs in the setting of infection, it is distinct from the sterile infiltrates of DLK. DLK can also occur following myopic keratomileusis, in which a disc of corneal tissue is removed, shaped and sutured back into place, although this technique is more historical, having been replaced by Lasik and PRK.
Vitelliform macular dystrophy causes a fatty yellow pigment (lipofuscin) to build up in cells underlying the macula. The retinal pigment epithelium also degenerates. Over time, the abnormal accumulation of this substance can damage the cells that are critical for clear central vision. As a result, people with this disorder often lose their central vision and may experience blurry or distorted vision, and loss is rarely symmetric. Scotomata appear, first with red light and then for green; finally, relative (or in more serious cases, absolute) scotomata occur with white light. Vitelliform macular dystrophy does not affect side (peripheral) vision or the ability to see at night.
Researchers have described two forms of vitelliform macular dystrophy with similar features. The early-onset form (known as Best disease) usually appears in childhood; however, the onset of symptoms and the severity of vision loss vary widely. The adult-onset form begins later, usually in middle age, and tends to cause relatively mild vision loss. The two forms of vitelliform macular dystrophy each have characteristic changes in the macula that can be detected during an eye examination.
Patients typically present within one week of surgery with eye pain, photophobia, conjunctivitis, or excessive tear production.
Hyphema (or hyphaema, see spelling differences) is blood in the front (anterior) chamber of the eye. It may appear as a reddish tinge, or it may appear as a small pool of blood at the bottom of the iris or in the cornea.
The prognosis for CSR is generally excellent. Whilst immediate vision loss may be as poor as 20/200 in the affected eye, clinically over 90% of patients regain 20/30 vision or better within 6 months.
Once the fluid has resolved, by itself or through treatment, visual acuity should continue to improve and distortion should reduce as the eye heals. However, some visual abnormalities can remain even if visual acuity is measured at 20/20, and lasting problems include decreased night vision, reduced color discrimination, and localized distortion caused by scarring of the sub-retinal layers.
Complications include subretinal neovascularization and pigment epithelial detachment.
The disease can re-occur causing progressive vision loss. There is also a chronic form, titled as type II central serous retinopathy, which occurs in approximately 5% of cases. This exhibits diffuse rather than focalized abnormality of the pigment epithelium, producing a persistent subretinal fluid. The serous fluid in these cases tends to be shallow rather than dome shaped. Prognosis for this condition is less favorable and continued clinical consultation is advised.