Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms of holoprosencephaly range from mild (no facial/organ defects, anosmia, or only a single central incisor) to moderate to severe (cyclopia).
There are four classifications of holoprosencephaly.
- Alobar holoprosencephaly, the most serious form, in which the brain fails to separate, is usually associated with severe facial anomalies, including lack of a nose and the eyes merged to a single median structure, see Cyclopia
- Semilobar holoprosencephaly, in which the brain's hemispheres have somewhat divided, is an intermediate form of the disease.
- Lobar holoprosencephaly, in which there is considerable evidence of separate brain hemispheres, is the least severe form. In some cases of lobar holoprosencephaly, the patient's brain may be nearly normal.
- Syntelencephaly, or middle interhemispheric variant of holoprosencephaly (MIHV), in which the posterior frontal lobe and the parietal lobe are not properly separated, but the rostrobasal forebrain properly separates; it is possible that this is not a variant of HPE at all, but is currently classified as such.
- Agenesis of the corpus callosum, in which there is a complete or partial absence of the corpus callosum. It occurs when the corpus callosum, the band of white matter connecting the two hemispheres in the brain, fails to develop normally, typically during pregnancy. The fibers that would otherwise form the corpus callosum become longitudinally oriented within each hemisphere and form structures called Probst bundles.
Holoprosencephaly consists of a spectrum of defects or malformations of the brain and face. At the most severe end of this spectrum are cases involving serious malformations of the brain, malformations so severe that they often cause miscarriage or stillbirth. At the other end of the spectrum are individuals with facial defects which may affect the eyes, nose, and upper lip - and normal or near-normal brain development. Seizures and mental retardation may occur.
The most severe of the facial defects (or anomalies) is cyclopia, an abnormality characterized by the development of a single eye, located in the area normally occupied by the root of the nose, and a missing nose or a nose in the form of a proboscis (a tubular appendage) located above the eye. The condition is also referred to as cyclocephaly or synophthalmia, and is very rare.
BPOP is located in the parasagittal and mesial regions of the parieto-occipital cortex. This form has been associated with IQ scores that range from average intelligence to mild mental retardation, seizures, and cognitive slowing. The age of seizure onset has been found to occur anywhere from 20 months to 15 years, and in most cases the seizures were intractable (meaning hard to control).
The diagnosis of PMG is merely descriptive and is not a disease in itself, nor does it describe the underlying cause of the brain malformation.
Polymicrogyria may be just one piece of a syndrome of developmental abnormalities, because children born with it may suffer from a wide spectrum of other problems, including global developmental disabilities, mild to severe mental retardation, motor dysfunctions including speech and swallowing problems, respiratory problems, and seizures. Though it is difficult to make a predictable prognosis for children with the diagnosis of PMG, there are some generalized clinical findings according to the areas of the brain that are affected.
- Bilateral frontal polymicrogyria (BFP) – Cognitive and motor delay, spastic quadriparesis, epilepsy
- Bilateral frontoparietal polymicrogyria (BFPP) – Severe cognitive and motor delay, seizures, dysconjugate gaze, cerebellar dysfunction
- Bilateral perisylvian polymicrogyria (BPP) – Pseudobulbar signs, cognitive impairment, epilepsy, some with arthrogryposis or lower motor neuron disease
- Bilateral parasagittal parieto-occipital polymicrogyria (BPPP) – Partial seizures, some with mental retardation
- Bilateral generalized polymicrogyria (BGP) – Cognitive and motor delay of variable severity, seizures
Holoprosencephaly (HPE) is a cephalic disorder in which the prosencephalon (the forebrain of the embryo) fails to develop into two hemispheres. Normally, the forebrain is formed and the face begins to develop in the fifth and sixth weeks of human pregnancy. The condition also occurs in other species.
The condition can be mild or severe. According to the National Institute of Neurological Disorders and Stroke (NINDS), "in most cases of holoprosencephaly, the malformations are so severe that babies die before birth."
When the embryo's forebrain does not divide to form bilateral cerebral hemispheres (the left and right halves of the brain), it causes defects in the development of the face and in brain structure and function.
In less severe cases, babies are born with normal or near-normal brain development and facial deformities that may affect the eyes, nose, and upper lip.
Symptoms vary according to the abnormality, but often feature poor muscle tone and motor function, seizures, developmental delays, mental retardation, failure to grow and thrive, difficulties with feeding, swelling in the extremities, and a smaller than normal head. Most infants with an NMD appear normal, but some disorders have characteristic facial or skull features that can be recognized by a neurologist.
More than 25 syndromes resulting from abnormal neuronal migration have been described. Among them are syndromes with several different patterns of inheritance; genetic counseling thus differs greatly between syndromes.
- Lissencephaly
- Microlissencephaly
- Schizencephaly
- Porencephaly
- Pachygyria
- Polymicrogyria
- Agyria
- Macrogyria
- Microgyria
- Micropolygyria
- Neuronal heterotopias
- Agenesis of the corpus callosum
- Agenesis of the cranial nerves
- Band heterotopias
Focal cortical dysplasia. Miller-Dieker syndrome, , Fukuyama congenital muscular dystrophy and Walker Warburg syndrome are genetic disorders associated with lissencephaly.
The bilateral form of FCMS ("also known as facio-labio-pharyngo-glosso-laryngo-brachial paralysis)" is consistent with the classic presentation of bilateral corticobulbar involvement. It is characterized by well-preserved automatic and reflex movements. It is caused by lesions in the cortical or subcortical region of the anterior opercular area surrounding the insula forming the gyri of the frontal, temporal, and parietal lobes.
The unilateral operculum syndrome is a very rare form of FCMS caused by the formation of unilateral lesions. In this form of FCMS, the unaffected hemisphere of the brain compensates for the unilateral lesion. Usually, this occurs when the unaffected region is the individual's dominant hemisphere.
Peripheral Territory Lesions
1. Contralateral homonymous hemianopsia
2. cortical blindness with bilateral involvement of the occipital lobe branches
3. visual agnosia
4. prosopagnosia
5. dyslexia, Anomic aphasia, color naming and discrimination problems
6. memory defect
7. topographic disorientation
Central Territory Lesions
1. central post-stroke (thalamic) pain: spontaneous pain, dysesthesias and sensory impairments
2. involuntary movements: chorea, intention tremor, hemiballismus
3. contralateral hemiplegia
4. Weber’s syndrome: occulomotor nerve palsy
5. Bálint's syndrome: loss of voluntary eye movements optic ataxia, asimultagnosia (inability to understand visual objects)
Common structural defects include birth defects, anencephaly, hypospadias, and spina bifida. Children born with structural defects may have malformed limbs, heart problems, and facial abnormalities.
Defects in the formation of the cerebral cortex include microgyria, polymicrogyria, bilateral frontoparietal polymicrogyria, and pachygyria.
Signs and symptoms of pseudobulbar palsy include:
- Slow and indistinct speech
- Dysphagia (difficulty in swallowing)
- Small, stiff and spastic tongue
- Brisk jaw jerk
- Dysarthria
- Labile affect
- Gag reflex may be normal, exaggerated or absent
- Examination may reveal upper motor neuron lesion of the limbs
Degenerative spinal disorders involve a loss of function in the spine. Pressure on the spinal cord and nerves may be associated with herniation or disc displacement. Brain degeneration also causes central nervous system diseases. Studies have shown that obese people may have severe degeneration in the brain due to loss of tissue affecting cognition.
Posterior cerebral artery syndrome is a condition whereby the blood supply from the posterior cerebral artery (PCA) is restricted, leading to a reduction of the function of the portions of the brain supplied by that vessel: the occipital lobe, the inferomedial temporal lobe, a large portion of the thalamus, and the upper brainstem and midbrain.
This event restricts the flow of blood to the brain in a near-immediate fashion. The blood hammer is analogous to the water hammer in hydrology and it consists of a sudden increase of the upstream blood pressure in a blood vessel when the bloodstream is abruptly blocked by vessel obstruction. Complete understanding of the relationship between mechanical parameters in vascular occlusions is a critical issue, which can play an important role in the future diagnosis, understanding and treatment of vascular diseases.
Depending upon the location and severity of the occlusion, signs and symptoms may vary within the population affected with PCA syndrome. Blockages of the proximal portion of the vessel produce only minor deficits due to the collateral blood flow from the opposite hemisphere via the posterior communicating artery. In contrast, distal occlusions result in more serious complications. Visual deficits, such as agnosia, prosopagnosia or cortical blindness (with bilateral infarcts) may be a product of ischemic damage to occipital lobe. Occlusions of the branches of the PCA that supply the thalamus can result in central post-stroke pain and lesions to the subthalamic branches can produce “a wide variety of deficits”.
Left posterior cerebral artery syndrome presents alexia without agraphia; the lesion is in the splenium of the corpus callosum.
Diagnosis of pseudobulbar palsy is based on observation of the symptoms of the condition. Tests examining jaw jerk and gag reflex can also be performed. It has been suggested that the majority of patients with pathological laughter and crying have pseudobulbar palsy due to bilateral corticobulbar lesions and often a bipyrimidal involvement of arms and legs. To further confirm the condition, MRI can be performed to define the areas of brain abnormality.
Dysarthrias are classified in multiple ways based on the presentation of symptoms. Specific dysarthrias include spastic (resulting from bilateral damage to the upper motor neuron), flaccid (resulting from bilateral or unilateral damage to the lower motor neuron), ataxic (resulting from damage to cerebellum), unilateral upper motor neuron (presenting milder symptoms than bilateral UMN damage), hyperkinetic and hypokinetic (resulting from damage to parts of the basal ganglia, such as in Huntington's disease or Parkinsonism), and the mixed dysarthrias (where symptoms of more than one type of dysarthria are present). The majority of dysarthric patients are diagnosed as having 'mixed' dysarthria, as neural damage resulting in dysarthria is rarely contained to one part of the nervous system — for example, multiple strokes, traumatic brain injury, and some kinds of degenerative illnesses (such as amyotrophic lateral sclerosis) usually damage many different sectors of the nervous system.
Ataxic dysarthria is an acquired neurological and sensorimotor speech deficit. It is a common diagnosis among the clinical spectrum of ataxic disorders. Since regulation of skilled movements is a primary function of the cerebellum, damage to the superior cerebellum and the superior cerebellar peduncle is believed to produce this form of dysarthria in ataxic patients. Growing evidence supports the likelihood of cerebellar involvement specifically affecting speech motor programming and execution pathways, producing the characteristic features associated with ataxic dysarthria. This link to speech motor control can explain the abnormalities in articulation and prosody, which are hallmarks of this disorder. Some of the most consistent abnormalities observed in patients with ataxia dysarthria are alterations of the normal timing pattern, with prolongation of certain segments and a tendency to equalize the duration of syllables when speaking. As the severity of the dysarthria increases, the patient may also lengthen more segments as well as increase the degree of lengthening of each individual segment.
Common clinical features of ataxic dysarthria include abnormalities in speech modulation, rate of speech, explosive or scanning speech, slurred speech, irregular stress patterns, and vocalic and consonantal misarticulations.
Ataxic dysarthria is associated with damage to the left cerebellar hemisphere in right-handed patients.
Dysarthria may affect a single system; however, it is more commonly reflected in multiple motor-speech systems. The etiology, degree of neuropathy, existence of co-morbidities, and the individual's response all play a role in the effect the disorder has on the individual's quality of life. Severity ranges from occasional articulation difficulties to verbal speech that is completely unintelligible.
Individuals with dysarthria may experience challenges in the following:
- Timing
- Vocal quality
- Pitch
- Volume
- Breath control
- Speed
- Strength
- Steadiness
- Range
- Tone
Examples of specific observations include a continuous breathy voice, irregular breakdown of articulation, monopitch, distorted vowels, word flow without pauses, and hypernasality.
Facial femoral syndrome is a rare congenital disorder. It is also known as femoral dysgenesis, bilateral femoral dysgenesis, bilateral-Robin anomaly and femoral hypoplasia-unusual facies syndrome. The main features of this disorder are underdeveloped thigh bones (femurs) and unusual facial features.
Usually associated with diaphragmatic hernia,
pulmonary hypoplasia,
imperforate anus,
micropenis,
bilateral cryptorchidism,
cerebral ventricular dilation,
camptodactyly,
agenesis of sacrum,
low-set ear.
- Fryns et al. (1979) reported 2 stillborn sisters with a multiple congenital anomaly syndrome characterized by coarse facies with cloudy corneae, diaphragmatic defects, absence of lung lobulation, and distal limb deformities. A sporadic case was reported by Goddeeris et al. (1980). Fitch (1988) claimed that she and her colleagues were the first to describe this disorder. In 1978 they reported a single infant, born of second-cousin parents, who had absent left hemidiaphragm, hydrocephalus, arhinencephaly, and cardiovascular anomalies.
- Lubinsky et al. (1983) reported a brother and sister with Fryns syndrome who both died in the neonatal period. Facial anomalies included broad nasal bridge, microretrognathia, abnormal helices, and cleft palate. Other features included distal digital hypoplasia, lung hypoplasia, and urogenital abnormalities, including shawl scrotum, uterus bicornis, and renal cysts. They were discordant for diaphragmatic hernia, cleft lip, and Dandy–Walker anomaly.
- Meinecke and Fryns (1985) reported an affected child; consanguinity of the parents supported recessive inheritance. They noted that a diaphragmatic defect had been described in 4 of the 5 reported cases and lung hypoplasia in all. Young et al. (1986) reported a sixth case. The male infant survived for 12 days. These authors listed corneal clouding, camptodactyly with hypoplastic nails, and abnormalities of the diaphragm as cardinal features.
- Samueloff et al. (1987) described a family in which all 4 children had Fryns syndrome and neonatal mortality. Features included hypoplastic lungs, cleft palate, retrognathia, micrognathism, small thorax, diaphragmatic hernia, distal limb hypoplasia, and early onset of polyhydramnios with premature delivery. Schwyzer et al. (1987) described an affected infant whose parents were second cousins.
- Moerman et al. (1988) described infant brother and sister with the syndrome of diaphragmatic hernia, abnormal face, and distal limb anomalies. Both died shortly after birth with severe respiratory distress. Ultrasonography demonstrated fetal hydrops, diaphragmatic hernia, and striking dilatation of the cerebral ventricles in both infants. Post-mortem examination showed Dandy–Walker malformation, ventricular septal defect, and renal cystic dysplasia.
- Cunniff et al. (1990) described affected brothers and 3 other cases, bringing the total reported cases of Fryns syndrome to 25. One of the affected brothers was still alive at the age of 24 months. Bilateral diaphragmatic hernias had been repaired on the first day of life. He required extracorporeal membrane oxygenation therapy for 5 days and oscillatory therapy for 3 months. Ventriculoperitoneal shunt was required because of slowly progressive hydrocephalus. Scoliosis was associated with extranumerary vertebral bodies and 13 ribs. Because of delayed gastric emptying, a gastrostomy tube was inserted. In addition, because of persistent chylothorax, he underwent decortication of the right lung and oversewing of the thoracic duct.
- Kershisnik et al. (1991) suggested that osteochondrodysplasia is a feature of Fryns syndrome.
- Willems et al. (1991) suggested that a diaphragmatic hernia is not a necessary feature of Fryns syndrome. They described a child with all the usual features except for diaphragmatic hernia; the diaphragm was reduced to a fibrous web with little muscular component. Bartsch et al. (1995) presented 2 unrelated cases with a typical picture of Fryns syndrome but without diaphragmatic hernia. One of these patients was alive at the age of 14 months, but was severely retarded. Bamforth et al. (1987) and Hanssen et al. (1992) also described patients with this syndrome who survived the neonatal period. In the report of Hanssen et al. (1992), 2 older sibs had died in utero. The reports suggested that survival beyond the neonatal period is possible when the diaphragmatic defect and lung hypoplasia are not present. However, mental retardation has been present in all surviving patients.
- Vargas et al. (2000) reported a pair of monozygotic twins with Fryns syndrome discordant for severity of diaphragmatic defect. Both twins had macrocephaly, coarse facial appearance, hypoplasia of distal phalanges, and an extra pair of ribs. Twin A lacked an apparent diaphragmatic defect, and at 1 year of age had mild developmental delay. Twin B had a left congenital diaphragmatic hernia and died neonatally. The authors suggested that absence of diaphragmatic defect in Fryns syndrome may represent a subpopulation of more mildly affected patients.
- Aymé, "et al." (1989) described 8 cases of Fryns syndrome in France. The most frequent anomalies were diaphragmatic defects, lung hypoplasia, cleft lip and palate, cardiac defects, including septal defects and aortic arch anomalies, renal cysts, urinary tract malformations, and distal limb hypoplasia. Most patients also had hypoplastic external genitalia and anomalies of internal genitalia, including bifid or hypoplastic uterus or immature testes. The digestive tract was also often abnormal; duodenal atresia, pyloric hyperplasia, malrotation and common mesentery were present in about half of the patients. When the brain was examined, more than half were found to have Dandy–Walker anomaly and/or agenesis of the corpus callosum. A few patients demonstrated cloudy cornea. Histologically, 2 of 3 patients showed retinal dysplasia with rosettes and gliosis of the retina, thickness of the posterior capsule of the lens, and irregularities of Bowman membrane.
- Alessandri et al. (2005) reported a newborn from the Comores Islands with clinical features of Fryns syndrome without diaphragmatic hernia. They noted that diaphragmatic hernia is found in more than 80% of cases and that at least 13 other cases had been reported with an intact diaphragm.
- In a postneonatal survivor of Fryns syndrome, Riela et al. (1995) described myoclonus appearing shortly after birth, which was well controlled on valproate. Progressive cerebral and brainstem atrophy was noted on serial MRIs made at 3 months and after 6 months of age.
- Van Hove et al. (1995) described a boy with Fryns syndrome who survived to age 3 years and reviewed the outcome of other reported survivors (approximately 14% of reported cases). Survivors tended to have less frequent diaphragmatic hernia, milder lung hypoplasia, absence of complex cardiac malformation, and severe neurologic impairment. Their patient had malformations of gyration and sulcation, particularly around the central sulcus, and hypoplastic optic tracts beyond the optic chiasm associated with profound mental retardation.
- Fryns and Moerman (1998) reported a second-trimester male fetus with Fryns syndrome and midline scalp defects. The authors stated that the finding of a scalp defect in Fryns syndrome confirms that it is a true malformation syndrome with major involvement of the midline structures.
- Ramsing et al. (2000) described 2 sibships with 4 fetuses and 1 preterm baby of 31 weeks' gestation affected by a multiple congenital disorder suggestive of Fryns syndrome. In addition to the diaphragmatic defects and distal limb anomalies, they presented with fetal hydrops, cystic hygroma, and multiple pterygias. Two affected fetuses in 1 family showed severe craniofacial abnormalities with bilateral cleft lip and palate and cardiovascular malformation.
- Arnold et al. (2003) reported a male fetus with Fryns syndrome and additional abnormalities, in particular, multiple midline developmental defects including gastroschisis, central nervous system defects with left arrhinencephaly and cerebellar hypoplasia, midline cleft of the upper lip, alveolar ridge, and maxillary bone, and cleft nose with bilateral choanal atresia.
- Pierson et al. (2004) reviewed 77 reported patients with Fryns syndrome and summarized the abnormal eye findings identified in 12 of them. They also described 3 new patients with Fryns syndrome, 1 of whom demonstrated unilateral microphthalmia and cloudy cornea.
- Slavotinek et al. (2005) noted that Fryns syndrome may be the most common autosomal recessive syndrome in which congenital diaphragmatic hernia (see DIH2, 222400) is a cardinal feature. The autosomal recessive inheritance in Fryns syndrome contrasts with the sporadic inheritance for most patients with DIH.
Internuclear ophthalmoplegia (INO) is a disorder of conjugate lateral gaze in which the affected eye shows impairment of adduction. When an attempt is made to gaze contralaterally (relative to the affected eye), the affected eye adducts minimally, if at all. The contralateral eye abducts, however with nystagmus. Additionally, the divergence of the eyes leads to horizontal diplopia. That is, if the right eye is affected the patient will "see double" when looking to the left, seeing two images side-by-side. Convergence is generally preserved.
Akinetic mutism can also occur as a result of damage to the mesencephalic region of the brain. Mesencephalic akinetic mutism is clinically categorized as somnolent or apathetic akinetic mutism. It is characterized by vertical gaze palsy and ophthalmoplegia. This state of akinetic mutism varies in intensity, but it is distinguished by drowsiness, lack of motivation, hyper-somnolence, and reduction in spontaneous verbal and motor actions.
Initial symptoms of spasmodic torticollis are usually mild. Some feel an invisible tremor of their head for a few months at onset. Then the head may turn, pull or tilt in jerky movements, or sustain a prolonged position involuntarily. Over time, the involuntary spasm of the neck muscles will increase in frequency and strength until it reaches a plateau. Symptoms can also worsen while the patient is walking or during periods of increased stress. Other symptoms include muscle hypertrophy, neck pain, dysarthria and tremor. Studies have shown that over 75% of patients report neck pain, and 33% to 40% experience tremor of the head.
There are many potential causes of dysarthria. They include toxic, metabolic, degenerative diseases, traumatic brain injury, or thrombotic or embolic stroke.
Degenerative diseases include parkinsonism, amyotrophic lateral sclerosis (ALS), multiple sclerosis, Huntington's disease, Niemann-Pick disease, and Friedreich ataxia.
Toxic and metabolic conditions include: Wilson's disease, hypoxic encephalopathy such as in drowning, and central pontine myelinolysis.
These result in lesions to key areas of the brain involved in planning, executing, or regulating motor operations in skeletal muscles (i.e. muscles of the limbs), including muscles of the head and neck (dysfunction of which characterises dysarthria). These can result in dysfunction, or failure of: the motor or somatosensory cortex of the brain, corticobulbar pathways, the cerebellum, basal nuclei (consisting of the putamen, globus pallidus, caudate nucleus, substantia nigra etc.), brainstem (from which the cranial nerves originate), or the neuro-muscular junction (in diseases such as myasthenia gravis) which block the nervous system's ability to activate motor units and effect correct range and strength of movements.
Causes:
- Brain tumor
- Cerebral palsy
- Guillain–Barré syndrome
- Hypothermia
- Lyme disease
- Stroke
- Intracranial hypertension (formerly known as pseudotumor cerebri)
- Tay-Sachs, and late onset Tay-Sachs (LOTS), disease
Akinetic mutism can occur in the frontal region of the brain and occurs because of bilateral frontal lobe damage. Akinetic mutism as a result of frontal lobe damage is clinically characterized as hyperpathic. It occurs in patients with bilateral circulatory disturbances in the supply area of the anterior cerebral artery.
The cause of this condition is not known. A genetic basis is suspected. More than one case have been reported in three families.
Fryns syndrome is an autosomal recessive multiple congenital anomaly syndrome that is usually lethal in the neonatal period. Fryns (1987) reviewed the syndrome.
Onset : Early childhood
Progression: Chronic progressive
Clinical: Cerebellar ataxia plus syndrome / Optic Atrophy Plus Syndrome
Ocular: Optic atrophy, nystagmus, scotoma, and bilateral retrobulbar neuritis.
Other: Mental retardation, myoclonic epilepsy, spasticity, and posterior column sensory loss. Tremor in some cases.
Musculoskeletal
Contractures, lower limbs, Achilles tendon contractures, Hamstring contractures, Adductor longus contractures
Systemic
Hypogonadotrophic hypogonadism.