Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Patients with MALS reportedly experience abdominal pain, particularly in the epigastrium, which may be associated with eating and which may result in anorexia and weight loss.The pain can be in the left or right side, but usually where the ribs meet. Other signs are persistent nausea, lassitude (especially after a heavy meal) and exercise intolerance. Diarrhea is a common symptom, some experience constipation. While some experience vomiting, not everyone does. Exercise or certain postures can aggravate the symptoms. Occasionally, physical examination reveals an abdominal bruit in the mid-epigastrium.
Complications of MALS result from chronic compression of the celiac artery. They include gastroparesis and aneurysm of the pancreaticoduodenal arteries.
It is estimated that in 10-24% of normal, asymptomatic individuals the median arcuate ligament crosses in front of (anterior to) the celiac artery, causing some degree of compression. Approximately 1% of these individuals exhibit severe compression associated with symptoms of MALS. The syndrome most commonly affects individuals between 20 and 40 years old, and is more common in women, particularly thin women.
The nutcracker syndrome (NCS) results most commonly from the compression of the left renal vein between the abdominal aorta (AA) and superior mesenteric artery (SMA), although other variants exist. The name derives from the fact that, in the sagittal plane and/or transverse plane, the SMA and AA (with some imagination) appear to be a nutcracker crushing a nut (the renal vein).
There is a wide spectrum of clinical presentations and diagnostic criteria are not well defined, which frequently results in delayed or incorrect diagnosis.
This condition is not to be confused with superior mesenteric artery syndrome, which is the compression of the third portion of the duodenum by the SMA and the AA.
NCS is associated with hematuria (which can lead to anemia) and abdominal pain (classically left flank or pelvic pain).
Since the left gonadal vein drains via the left renal vein it can also result in left testicular pain in men or left lower quadrant pain in women. Nausea and vomiting can result due to compression of the splanchnic veins. An unusual manifestation of NCS includes varicocele formation and varicose veins in the lower limbs. Another clinical study has shown that nutcracker syndrome is a frequent finding in varicocele-affected patients and possibly, nutcracker syndrome should be routinely excluded as a possible cause of varicocele and pelvic congestion.
Signs and symptoms include early satiety, nausea, vomiting, extreme "stabbing" postprandial abdominal pain (due to both the duodenal compression and the compensatory reversed peristalsis), abdominal distention/distortion, burping (eructation), external hypersensitivity or tenderness of the abdominal area, reflux, and heartburn. In infants, feeding difficulties and poor weight gain are also frequent symptoms.
In some cases of SMA syndrome, severe malnutrition accompanying spontaneous wasting may occur. This, in turn, increases the duodenal compression, which worsens the underlying cause, creating a cycle of worsening symptoms.
"Food fear" is a common development among patients with the chronic form of SMA syndrome. For many, symptoms are partially relieved when in the left lateral decubitus or knee-to-chest position, or in the prone (face down) position. A Hayes maneuver (pressure applied below the umbilicus in cephalad and dorsal direction) elevates the root of the SMA, also slightly easing the constriction. Symptoms can be aggravated when leaning to the right or taking a supine (face up) position.
Superior mesenteric artery (SMA) syndrome is a gastro-vascular disorder in which the third and final portion of the duodenum is compressed between the abdominal aorta (AA) and the overlying superior mesenteric artery. This rare, potentially life-threatening syndrome is typically caused by an angle of 6°–25° between the AA and the SMA, in comparison to the normal range of 38°–56°, due to a lack of retroperitoneal and visceral fat (mesenteric fat). In addition, the aortomesenteric distance is 2–8 millimeters, as opposed to the typical 10–20. However, a narrow SMA angle alone is not enough to make a diagnosis, because patients with a low BMI, most notably children, have been known to have a narrow SMA angle with no symptoms of SMA syndrome.
SMA syndrome was first described in 1861 by Carl Freiherr von Rokitansky in victims at autopsy, but remained pathologically undefined until 1927 when Wilkie published the first comprehensive series of 75 patients. According to a 1956 study, only 0.3% of patients referred for an upper-gastrointestinal-tract barium studies fit this diagnosis, making it one of the rarest gastrointestinal disorders known to medical science. Recognition of SMA syndrome as a distinct clinical entity is controversial, due in part to its possible confusion with a number of other conditions, though it is now widely acknowledged.
SMA syndrome is also known as Wilkie's syndrome, cast syndrome, mesenteric root syndrome, chronic duodenal ileus and intermittent arterio-mesenteric occlusion.
It is distinct from Nutcracker syndrome, which is the entrapment of the left renal vein between the AA and the SMA, although it is possible to be diagnosed with both conditions.
TOS affects mainly the upper limbs, with signs and symptoms manifesting in the shoulders, neck, arms and hands. Pain can be present on an intermittent or permanent basis. It can be sharp/stabbing, burning, or aching. TOS can involve only part of the hand (as in the pinky and adjacent half of the ring finger), all of the hand, or the inner aspect of the forearm and upper arm. Pain can also be in the side of the neck, the pectoral area below the clavicle, the armpit/axillary area, and the upper back (i.e., the trapezius and rhomboid area). Discoloration of the hands, one hand colder than the other hand, weakness of the hand and arm muscles, and tingling are commonly present.
TOS is often the underlying cause of refractory upper limb conditions like frozen shoulder and carpal tunnel syndrome that frequently defy standard treatment protocols. TOS can be related to Forward head posture.
A painful, swollen and blue arm, particularly when occurring after strenuous physical activity, could be the first sign of a subclavian vein compression related with an unknown TOS and complicated by thrombosis (blood clots), the so-called Paget–Schroetter syndrome or effort-induced thrombosis.
TOS can be related to cerebrovascular arterial insufficiency when affecting the subclavian artery. It also can affect the vertebral artery, in which case it could produce vision disturbances, including transient blindness, and embolic cerebral infarction.
TOS can also lead to eye problems and vision loss as a circumstance of vertebral artery compression. Although very rare, if compression of the brain stem is also involved in an individual presentation of TOS, transient blindness may occur while the head is held in certain positions.
If left untreated, TOS can lead to neurological deficits as a result of the hypoperfusion and hypometabolism of certain areas of the brain and cerebellum.
CCF symptoms include bruit (a humming sound within the skull due to high blood flow through the arteriovenous fistula), progressive visual loss, and pulsatile proptosis or progressive bulging of the eye due to dilatation of the veins draining the eye. Pain is the symptom that patients often find the most difficult to tolerate.
Patients usually present with sudden or insidious onset of redness in one eye, associated with progressive proptosis or bulging.
They may have a history of similar episodes in the past.
In medicine, May-Thurner syndrome (MTS), also known as the iliac vein compression syndrome, is a rare condition in which compression of the common venous outflow tract of the left lower extremity may cause discomfort, swelling, pain or blood clots, called deep venous thrombosis (DVT), in the iliofemoral vein.
The specific problem is compression of the left common iliac vein by the overlying right common iliac artery. This leads to pooling or stasis of blood, predisposing the individual to the formation of blood clots. Uncommon variations of MTS have been described, such as the right common iliac vein getting compressed by the right common iliac artery.
In the 21st century the May-Thurner syndrome definition has been expanded to a broader disease profile known as nonthrombotic iliac vein lesions (NIVL) which can involve both the right and left iliac veins as well as multiple other named venous segments. This syndrome frequently manifests as pain when the limb is dependent (hanging down the edge of a bed/chair) and/or significant swelling of the whole limb.
There are three main types of TOS, named according to the cause of the symptoms; however, these three classifications have been coming into disfavor because TOS can involve all three types of compression to various degrees. The compression can occur in three anatomical structures (arteries, veins and nerves), it can be isolated, or, more commonly, two or three of the structures are compressed to greater or lesser degrees. In addition, the compressive forces can be of different magnitude in each affected structure. Therefore, symptoms can be variable.
- Neurogenic TOS includes disorders produced by compression of components of the brachial plexus nerves. The neurogenic form of TOS accounts for 95% of all cases of TOS.
- Arterial TOS is due to compression of the subclavian artery. This is less than one percent of cases.
- Venous TOS is due to compression of the subclavian vein. This makes up about 4% of cases.
May-Thurner syndrome (MTS) is thought to represent between two and five percent of lower-extremity venous disorders. May-Thurner syndrome is often unrecognized; however, current estimates are that this condition is three times more common in women than in men. The classic syndrome typically presents in the second to fourth decades of life. In the 21st century in a broader disease profile, the syndrome acts as a permissive lesion and becomes symptomatic when something else happens such as, following trauma, a change in functional status such as swelling following orthopaedic joint replacement.
It is important to consider May-Thurner syndrome in patients who have no other obvious reason for hypercoagulability and who present with left lower extremity thrombosis. To rule out other causes for hypercoagulation, it may be appropriate to check the antithrombin, protein C, protein S, factor V Leiden, and prothrombin G20210A.
Venography will demonstrate the classical syndrome when causing deep venous thrombosis.
May-Thurner syndrome in the broader disease profile known as nonthrombotic iliac vein lesions (NIVLs) exists in the symptomatic ambulatory patient and these lesions are usually not seen by venography. Morphologically, intravascular ultrasound (IVUS) has emerged as the best current tool in the broader sense. Functional testing such as duplex ultrasound, venous and interstitial pressure measurement and plethysmography may sometimes be beneficial. Compression of the left common iliac vein may be seen on pelvic CT.
Carotid cavernous fistulae may form following closed or penetrating head trauma, surgical damage, rupture of an intracavernous aneurysm, or in association with connective tissue disorders, vascular diseases and dural fistulas.
Aortocaval compression syndrome is compression of the abdominal aorta and inferior vena cava by the gravid uterus when a pregnant woman lies on her back, i.e. in the supine position. It is a frequent cause of low maternal blood pressure (hypotension), which can be result in loss of consciousness and in extreme circumstances fetal demise.
Aortocaval compression is thought to be the cause of supine hypotensive syndrome. Supine hypotensive syndrome is characterized by pallor, tachycardia, sweating, nausea, hypotension and dizziness and occurs when a pregnant woman lies on her back and resolves when she is turned on her side.
The aorta and inferior vena cava are central vessels, the largest artery and vein. They supply blood to the heart, and the rest of the body. Thus, when there is compression due to the weight of the fetus, signs of shock (sweating, pallor, fast and weak pulse) may be experienced. Patients should be placed in a left lateral recumbent position and emergency help summoned immediately.
The most common signs/symptoms of DAVFs are:
1. Pulsatile tinnitus
2. Occipital bruit
3. Headache
4. Visual impairment
5. Papilledema
Pulsatile tinnitus is the most common symptom in patients, and it is associated with transverse-sigmoid sinus DAVFs. Carotid-cavernous DAVFs, on the other hand, are more closely associated with pulsatile exophthalmos. DAVFs may also be asymptomatic (e.g. cavernous sinus DAVFs).
Diagnosis is usually suspected by clinical history and confirmed by MRI, in which edema of the teres minor is seen, with variable involvement of the deltoid. The circumflex humeral artery may also be compressed. Before the advent of MRI, compression of this vessel on angiography used to be the mechanism of diagnosis, although this is no longer done as it is an invasive procedure.
Atrophy can occur in cases of chronic nerve impingement. It can be associated with a glenoid labral cyst, with the cyst also reflecting injury of the glenoid labrum.
Posterior spinal artery syndrome is much rarer than its anterior counterpart as the white matter structures that are present are much less vulnerable to ischemia since they have a better blood supply. When posterior spinal artery syndrome does occur, dorsal columns are damaged and ischemia may spread into the posterior horns. Clinically the syndrome presents as a loss of tendon reflexes and loss of joint position sense
Symptoms are caused by vascular compression of the airway, esophagus or both. Presentation is often within the first month (neonatal period) and usually within the first 6 months of life. Starting at birth an inspiratory and expiratory stridor (high pitch noise from turbulent airflow in trachea) may be present often in combination with an expiratory wheeze. The severity of the stridor may depend on the patient’s body position. It can be worse when the baby is lying on his back rather than its side. Sometimes the stridor can be relieved by extending the neck (lifting the chin up). Parents may notice that the baby’s cry is hoarse and the breathing noisy. Frequently a persistent cough is present. When the airway obstruction is significant there may be episodes of severe cyanosis (“blue baby”) that can lead to unconsciousness. Recurrent respiratory infections are common and secondary pulmonary secretions can further increase the airway obstruction.
Secondary to compression of the esophagus babies often feed poorly. They may have difficulties in swallowing liquids with choking or regurgitating and increased respiratory obstruction during feeding. Older patients might refuse to take solid food, although most infants with severe symptoms nowadays are operated upon before they are offered solid food.
Occasionally patients with double aortic arches present late (during later childhood or adulthood). Symptoms may mimic asthma.
Differential considerations include similar rotator cuff denervation syndromes such as Parsonage–Turner syndrome, and compression of the suprascapular nerve at the spinoglenoid notch in which the infraspinatus, and to a lesser degree supraspinatus is involved.
Transient ischemic attacks (TIAs) rarely affect the spinal cord and usually affect the brain; however, cases have been documented in these areas. Spinal ateriovenous malformations are the main cause and are represented later in this article. However, TIAs can result from emboli in calcific aortic disease and aortic coarctation.
Symptoms include hemoptysis, and/or massive hemorrhage which result from the formation of a fistula between the trachea and the brachiocephalic artery. The primary threat is respiratory compromise leading to dyspnea and cyanosis. Patients can later present with hypovolemic shock which include symptoms of tachycardia, cyanosis, cold and clammy skin, dizziness, confusion, and fatigue. Patients may also develop septicemia.
A Tracheoinnominate fistula (TIAF or TIF) is an abnormal connection (fistula) between the innominate artery (brachiocephalic trunk or brachiocephalic artery) and the trachea. A TIF is a rare but life-threatening iatrogenic injury, usually the sequela of a tracheotomy.
Possible symptoms include:
Classic eagle syndrome is present on only one side, however, rarely, it may be present on both sides.
In vascular eagle syndrome, the elongated styloid process comes in contact with the internal carotid artery below the skull. In these cases, turning the head can cause compression of the artery or a tear inside the blood vessel, which restricts blood flow and can potentially lead to a transient ischemic attack (TIA) or stroke.
VBD
- Hemifacial spasm
- Paresis
- Trigeminal neuralgia
ICD
- Progressive visual field defect
Eagle syndrome (also termed stylohyoid syndrome styloid syndrome, styloid-stylohyoid syndrome, or styloid–carotid artery syndrome) is a rare condition commonly characterized but not limited to - sudden, sharp nerve-like pain in the jaw bone and joint, back of the throat, and base of the tongue, triggered by swallowing, moving the jaw, or turning the neck. Since the brain to body's nerve connections pass through the neck; many seemingly random symptoms can be triggered by impingement or entanglement. First described by American otorhinolaryngologist Watt Weems Eagle in 1937, the condition is caused by an elongated or misshapen styloid process, the slender, pointed piece of bone just below the ear, and/or calcification of the stylohyoid ligament, which interferes with the functioning of neighboring regions in the body, giving rise to pain.
Most commonly found adjacent to dural sinuses in the following locations:
1. Transverse (lateral) sinus, left-sided slightly more common than right
2. Intratentorial
3. From the posterior cavernous sinus, usually draining to the transverse or sigmoid sinuses
4. Vertebral artery (posterior meningeal branch)