Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Signs and symptoms vary depending on the type of cataract, though considerable overlap occurs. People with nuclear sclerotic or brunescent cataracts often notice a reduction of vision. Those with posterior subcapsular cataracts usually complain of glare as their major symptom.
The severity of cataract formation, assuming no other eye disease is present, is judged primarily by a visual acuity test. The appropriateness of surgery depends on a patient's particular functional and visual needs and other risk factors, all of which may vary widely.
Nearly every person who undergoes a vitrectomy—without ever having had cataract surgery—will experience progression of nuclear sclerosis after the operation. This may be because the native vitreous humor is different to the solutions used to replace the vitreous (vitreous substitutes), such as BSS Plus. This may also be because the native vitreous humour contains ascorbic acid which helps neutralize oxidative damage to the lens and because traditional vitreous substitutes do not contain ascorbic acid. As such, for phakic patients requiring a vitrectomy it is becoming increasingly common for ophthalmologists to offer the vitrectomy with a combined prophylactic cataract surgery procedure to prophylactically prevent cataract formation.
Seeing rainbows around lights, especially at night, usually indicates swelling of the cornea. This may occur from a variety of causes which are discussed under Corneal Edema. Cataract can sometimes cause this also.
Colour vision is perceived mainly by the macula, which is the central vision portion of the retina. Thus any disorder affecting the macula may cause a disturbance in color vision. However, about 8% of males and 0.5% of females have some version of "colour blindness" from birth. Usually this is a genetically inherited trait, and is of the "red-green confusion" variety. The reds, browns, olives, and gold may be confused. Purple may be confused with blue, and pastel pinks, oranges, yellows, and greens look similar. Usually both eyes are affected equally.
There are many obscure macular retinal disorders that can lead to a loss of colour vision, and many of these syndromes are inherited as well. There may also be a problem with a generalized loss of vision with these problems as well. Other retinal problems can lead to a temporary disturbance of colour vision, such as Central serous chorioretinopathy, Macular Edema of different causes, and Macular Degeneration.
Certain types of cataract can gradually affect the colour vision, but this is usually not noticed until one cataract is removed. The cataract seems to filter out the colour blue, and everything seems more blue after cataract extraction. Optic nerve disorders such as Optic Neuritis can greatly affect colour vision, with colours seeming washed out during or after an episode.
A rhegmatogenous retinal detachment is commonly preceded by a posterior vitreous detachment which gives rise to these symptoms:
- flashes of light (photopsia) – very brief in the extreme peripheral (outside of center) part of vision
- a sudden dramatic increase in the number of floaters
- a ring of floaters or hairs just to the temporal (skull) side of the central vision
Although most posterior vitreous detachments do not progress to retinal detachments, those that do produce the following symptoms:
- a dense shadow that starts in the peripheral vision and slowly progresses towards the central vision
- the impression that a veil or curtain was drawn over the field of vision
- straight lines (scale, edge of the wall, road, etc.) that suddenly appear curved (positive Amsler grid test)
- central visual loss
In the event of an appearance of sudden flashes of light or floaters, an eye doctor needs to be consulted immediately. A shower of floaters or any loss of vision, too, is a medical emergency.
Migraine headaches may be preceded by a visual "aura", lasting for 20 to 30 minutes, and then proceeding to the headache. Some people, however, experience the aura but do not have a headache. This visual aura can be very dramatic. Classically, a small blind spot appears in the central vision with a shimmering, zig-zag light inside of it. This enlarges, and moves to one side or the other of the vision, over a 20 to 30 minute period. When it is large, this crescent shaped blind spot containing this brightly flashing light can be difficult to ignore, and some people fear that they are having a stroke. In reality, it is generally a harmless phenomenon, except in people who subsequently get the headache of migraine. Since migraine originates in the brain, the visual effect typically involves the same side of vision in each eye, although it may seem more prominent in one eye or the other.
Some people get different variations of this phenomenon, with the central vision being involved, or with the visual effect similar to "heat rising off of a car". Some people describe a "kaleidoscope" effect, with pieces of the vision being missing. All of these variations are consistent with ophthalmic migraine.
Eye floaters are suspended in the vitreous humour, the thick fluid or gel that fills the eye. The vitreous humour, or vitreous body, is a jelly-like, transparent substance that fills a majority of the eye. It lies within the vitreous chamber behind the lens, and is one of the four optical components of the eye. Thus, floaters follow the rapid motions of the eye, while drifting slowly within the fluid. When they are first noticed, the natural reaction is to attempt to look directly at them. However, attempting to shift one's gaze toward them can be difficult as floaters follow the motion of the eye, remaining to the side of the direction of gaze. Floaters are, in fact, visible only because they do not remain perfectly fixed within the eye. Although the blood vessels of the eye also obstruct light, they are invisible under normal circumstances because they are fixed in location relative to the retina, and the brain "tunes out" stabilized images due to neural adaptation. This stabilization is often interrupted by floaters, especially when they tend to remain visible.
Floaters are particularly noticeable when looking at a blank surface or an open monochromatic space, such as blue sky. Despite the name "floaters", many of these specks have a tendency to sink toward the bottom of the eyeball, in whichever way the eyeball is oriented; the supine position (looking up or lying back) tends to concentrate them near the fovea, which is the center of gaze, while the textureless and evenly lit sky forms an ideal background against which to view them. The brightness of the daytime sky also causes the eyes' pupils to contract, reducing the aperture, which makes floaters less blurry and easier to see.
Floaters present at birth usually remain lifelong, while those that appear later may disappear within weeks or months. They are not uncommon, and do not cause serious problems for most persons; they represent one of the most common presentations to hospital eye services. A survey of optometrists in 2002 suggested that an average of 14 patients per month per optometrist presented with symptoms of floaters in the UK. However, floaters are more than a nuisance and a distraction to those with severe cases, especially if the spots seem to constantly drift through the field of vision. The shapes are shadows projected onto the retina by tiny structures of protein or other cell debris discarded over the years and trapped in the vitreous humour. Floaters can even be seen when the eyes are closed on especially bright days, when sufficient light penetrates the eyelids to cast the shadows. It is not, however, only elderly persons who are troubled by floaters; they can also become a problem to younger people, especially if they are myopic. They are also common after cataract operations or after trauma.
Floaters are able to catch and refract light in ways that somewhat blur vision temporarily until the floater moves to a different area. Often they trick persons who are troubled by floaters into thinking they see something out of the corner of their eye that really is not there. Most persons come to terms with the problem, after a time, and learn to ignore their floaters. For persons with severe floaters it is nearly impossible to completely ignore the large masses that constantly stay within almost direct view.
Floaters have been reported in patients as young as 3. Floaters in teenage patients and young adults are usually harder to treat. For persons in this age group, the floater that is seen usually looks like a kind of translucent worm/web/cell. Very little is known about this region, and it only becomes distinct after the vitreous humour detaches from the retina at later stages of life. Due to their microscopic size they cannot be seen by doctors. They only appear as big as they do because of their proximity to the retina. This type of floater is still described occasionally in people in their 30s and very rarely occurs in people in their 40s.
Many people with amblyopia, especially those who only have a mild form, are not aware they have the condition until tested at older ages, since the vision in their stronger eye is normal. People typically have poor stereo vision, however, since it requires both eyes. Those with amblyopia further may have, on the affected eye, poor pattern recognition, poor visual acuity, and low sensitivity to contrast and motion.
Amblyopia is characterized by several functional abnormalities in spatial vision, including reductions in visual acuity, contrast sensitivity function, and vernier acuity, as well as spatial distortion, abnormal spatial interactions, and impaired contour detection. In addition, individuals with amblyopia suffer from binocular abnormalities such as impaired stereoacuity (stereoscopic acuity) and abnormal binocular summation. Also, a crowding phenomenon is present.
These deficits are usually specific to the amblyopic eye. However, subclinical deficits of the "better" eye have also been demonstrated.
People with amblyopia also have problems of binocular vision such as limited stereoscopic depth perception and usually have difficulty seeing the three-dimensional images in hidden stereoscopic displays such as autostereograms. Perception of depth, however, from monocular cues such as size, perspective, and motion parallax remains normal.
Floaters are deposits of various size, shape, consistency, refractive index, and motility within the eye's vitreous humour, which is normally transparent. At a young age, the vitreous is
transparent, but as one ages, imperfections gradually develop. The common type of floater, which is present in most persons' eyes, is due to degenerative changes of the vitreous humour. The perception of floaters is known as "myodesopsia", or less commonly as "myodaeopsia", "myiodeopsia", or "myiodesopsia". They are also called "Muscae volitantes" (Latin: "flying flies"), or "mouches volantes" (from the French). Floaters are visible because of the shadows they cast on the retina or refraction of the light that passes through them, and can appear alone or together with several others in one's visual field. They may appear as spots, threads, or fragments of cobwebs, which float slowly before the observer's eyes. As these objects exist within the eye itself, they are not optical illusions but are entoptic phenomena. They are not to be confused with visual snow, although these two conditions may co-exist.
Amblyopia has three main causes:
- Strabismic: by strabismus (misaligned eyes)
- Refractive: by anisometropia (difference of a certain degree of nearsightedness, farsightedness, or astigmatism), or by significant amount of equal refractive error in both eyes
- Deprivational: by deprivation of vision early in life by vision-obstructing disorders such as congenital cataract
With anterior lens luxation, the lens pushes into the iris or actually enters the anterior chamber of the eye. This can cause glaucoma, uveitis, or damage to the cornea. Uveitis (inflammation of the eye) causes the pupil to constrict (miosis) and trap the lens in the anterior chamber, leading to an obstruction of outflow of aqueous humour and subsequent increase in ocular pressure (glaucoma). Better prognosis is valued in lens replacement surgery (retained vision and normal intraocular pressure) when it is performed before the onset of secondary glaucoma. Glaucoma secondary to anterior lens luxation is less common in cats than dogs due to their naturally deeper anterior chamber and the liquification of the vitreous humour secondary to chronic inflammation. Anterior lens luxation is considered to be an ophthalmological emergency.
Congenital cataracts refers to a lens opacity present at birth. Congenital cataracts cover a broad spectrum of severity: whereas some lens opacities do not progress and are visually insignificant, others can produce profound visual impairment.
Congenital cataracts may be unilateral or bilateral. They can be classified by morphology, presumed or defined genetic cause, presence of specific metabolic disorders, or associated ocular anomalies or systemic findings.
Aphakia is the absence of the lens of the eye, due to surgical removal, a perforating wound or ulcer, or congenital anomaly. It causes a loss of accommodation, far sightedness (hyperopia), and a deep anterior chamber. Complications include detachment of the vitreous or retina, and glaucoma.
Babies are rarely born with aphakia. Occurrence most often results from surgery to remove congenital cataract (clouding of the eye's lens, which can block light from entering the eye and focusing clearly). Congenital cataracts usually develop as a result of infection of the fetus or genetic reasons. It is often difficult to identify the exact cause of these cataracts, especially if only one eye is affected.
People with aphakia have relatively small pupils and their pupils dilate to a lesser degree.
Retinal detachment is a disorder of the eye in which the retina separates from the layer underneath. Symptoms include an increase in the number of floaters, flashes of light, and worsening of the outer part of the visual field. This may be described as a curtain over part of the field of vision. In about 7% of cases both eyes are affected. Without treatment permanent loss of vision may occur.
The mechanism most commonly involves a break in the retina that then allows the fluid in the eye to get behind the retina. A break in the retina can occur from a posterior vitreous detachment, injury to the eye, or inflammation of the eye. Other risk factors include being short sighted and previous cataract surgery. Retinal detachments also rarely occur due to a choroidal tumor. Diagnosis is by either looking at the back of the eye with an ophthalmoscope or by ultrasound.
In those with a retinal tear, efforts to prevent it becoming a detachment include cryotherapy using a cold probe or photocoagulation using a laser. Treatment of retinal detachment should be carried out in a timely manner. This may include scleral buckling where silicone is sutured to the outside of the eye, pneumatic retinopexy where gas is injected into the eye, or vitrectomy where the vitreous is partly removed and replaced with either gas or oil.
Retinal detachments affect between 0.6 and 1.8 people per 10,000 per year. About 0.3% of people are affected at some point in their life. It is most common in people who are in their 60s or 70s. Males are more often affected than females. The long term outcomes depend on the duration of the detachment and whether the macula was detached. If treated before the macula detaches outcomes are generally good.
When this occurs there is a characteristic pattern of symptoms:
- Flashes of light (photopsia)
- A sudden dramatic increase in the number of floaters
- A ring of floaters or hairs just to the temporal side of the central vision
As a posterior vitreous detachment proceeds, adherent vitreous membrane may pull on the retina. While there are no pain fibers in the retina, vitreous traction may stimulate the retina, with resultant flashes that can look like a perfect circle.
If a retinal vessel is torn, the leakage of blood into the vitreous cavity is often perceived as a "shower" of floaters. Retinal vessels may tear in association with a retinal tear, or occasionally without the retina being torn.
Congenital cataracts occur in a variety of morphologic configurations, including lamellar, polar, sutural, coronary, cerulean, nuclear, capsular, complete, membranous.
Epiretinal membrane is a disease of the eye in response to changes in the vitreous humor or more rarely, diabetes. It is also called macular pucker. Sometimes, as a result of immune system response to protect the retina, cells converge in the macular area as the vitreous ages and pulls away in posterior vitreous detachment (PVD). PVD can create minor damage to the retina, stimulating exudate, inflammation, and leucocyte response. These cells can form a transparent layer gradually and, like all scar tissue, tighten to create tension on the retina which may bulge and pucker (e.g., macular pucker), or even cause swelling or macular edema. Often this results in distortions of vision that are clearly visible as bowing ←→ when looking at lines on chart paper (or an Amsler grid) within the macular area, or central 1.0 degree of visual arc. Usually it occurs in one eye first, and may cause binocular diplopia or double vision if the image from one eye is too different from the image of the other eye. The distortions can make objects look different in size (usually larger = macropsia), especially in the central portion of the visual field, creating a localized or field dependent aniseikonia that cannot be fully corrected optically with glasses. Partial correction often improves the binocular vision considerably though. In the young (under 50 years of age), these cells occasionally pull free and disintegrate on their own; but in the majority of sufferers (over 60 years of age) the condition is permanent. The underlying photoreceptor cells, rod cells and cone cells, are usually not damaged unless the membrane becomes quite thick and hard; so usually there is no macular degeneration.
The risk of retinal detachment is greatest in the first 6 weeks following a vitreous detachment, but can occur over 3 months after the event.
The risk of retinal tears and detachment associated with vitreous detachment is higher in patients with myopic retinal degeneration, lattice degeneration, and a familial or personal history of previous retinal tears/detachment.
Without the focusing power of the lens, the eye becomes very farsighted. This can be corrected by wearing glasses, contact lenses, or by implant of an artificial lens. Artificial lenses are described as "pseudophakic." Also, since the lens is responsible for adjusting the focus of vision to different lengths, patients with aphakia have a total loss of accommodation.
Some individuals have said that they perceive ultraviolet light, invisible to those with a lens, as whitish blue or whitish-violet.
With posterior lens luxation, the lens falls back into the vitreous humour and lies on the floor of the eye. This type causes fewer problems than anterior lens luxation, although glaucoma or ocular inflammation may occur. Surgery is used to treat dogs with significant symptoms. Removal of the lens before it moves to the anterior chamber may prevent secondary glaucoma.
The effects a coloboma has on the vision can be mild or more severe depending on the size and location of the gap. If, for example, only a small part of the iris is missing, vision may be normal, whereas if a large part of the retina or optic nerve is missing, vision may be poor and a large part of the visual field may be missing. This is more likely to cause problems with mobility if the lower visual field is absent. Other conditions can be associated with a coloboma. Sometimes, the eye may be reduced in size, a condition called microphthalmia. Glaucoma, nystagmus, scotoma, or strabismus may also occur.
Refractive errors such as hyperopia and Anisometropia may be associated abnormalities found in patients with vertical strabismus.
The vertical miscoordination between the two eyes may lead to
- Strabismic amblyopia, (due to deprivation / suppression of the deviating eye)
- cosmetic defect (most noticed by parents of a young child and in photographs)
- Face turn, depending on presence of binocular vision in a particular gaze
- diplopia or double vision - more seen in adults (maturity / plasticity of neural pathways) and suppression mechanisms of the brain in sorting out the images from the two eyes.
- cyclotropia, a cyclotorsional deviation of the eyes (rotation around the visual axis), particularly when the root cause is an oblique muscle paresis causing the hypertropia.
Retinal image size is determined by many factors. The size and position of the object being viewed affects the characteristics of the light entering the system. Corrective lenses affect these characteristics and are used commonly to correct refractive error. The optics of the eye including its refractive power and axial length also play a major role in retinal image size.
Aniseikonia can occur naturally or be induced by the correction of a refractive error, usually anisometropia (having significantly different refractive errors between each eye) or antimetropia (being myopic (nearsighted) in one eye and hyperopic (farsighted) in the other.) Meridional aniseikonia occurs when these refractive differences only occur in one meridian (see astigmatism). Refractive surgery can cause aniseikonia in much the same way that it is caused by glasses and contacts.
One cause of significant anisometropia and subsequent aniseikonia has been aphakia. Aphakic patients do not have a crystalline lens. The crystalline lens is often removed because of opacities called cataracts. The absence of this lens left the patient highly hyperopic (farsighted) in that eye. For some patients the removal was only performed on one eye, resulting in the anisometropia / aniseikonia. Today, this is rarely a problem because when the lens is removed in cataract surgery, an intraocular lens, or IOL is left in its place.
This condition is usually unilateral, and its symptoms vary from none to mild blurring and discomfort. Signs include diffuse iris atrophy and small white keratic precipitates (deposits on the inner surface of the cornea), cells presenting in the anterior chamber as well as the anterior vitreous. Glaucoma and cataract occur frequently.
Hypertropia is a condition of misalignment of the eyes (strabismus), whereby the visual axis of one eye is higher than the fellow fixating eye.
Hypotropia is the similar condition, focus being on the eye with the visual axis lower than the fellow fixating eye.
Dissociated Vertical Deviation is a special type of hypertropia leading to slow upward drift of one or rarely both eyes, usually when the patient is inattentive.
Signs and symptoms of macular degeneration include:
- Visual symptoms
- Distorted vision in the form of metamorphopsia, in which a grid of straight lines appears wavy and parts of the grid may appear blank: Patients often first notice this when looking at things like miniblinds in their home or telephone poles while driving. There may also be central scotomas, shadows or missing areas of vision
- Slow recovery of visual function after exposure to bright light (photostress test)
- Visual acuity drastically decreasing (two levels or more), e.g.: 20/20 to 20/80
- Blurred vision: Those with nonexudative macular degeneration may be asymptomatic or notice a gradual loss of central vision, whereas those with exudative macular degeneration often notice a rapid onset of vision loss (often caused by leakage and bleeding of abnormal blood vessels).
- Trouble discerning colors, specifically dark ones from dark ones and light ones from light ones
- A loss in contrast sensitivity
Macular degeneration by itself will not lead to total blindness. For that matter, only a very small number of people with visual impairment are totally blind. In almost all cases, some vision remains, mainly peripheral. Other complicating conditions may possibly lead to such an acute condition (severe stroke or trauma, untreated glaucoma, etc.), but few macular degeneration patients experience total visual loss.
The area of the macula comprises only about 2.1% of the retina, and the remaining 97.9% (the peripheral field) remains unaffected by the disease. Even though the macula provides such a small fraction of the visual field, almost half of the visual cortex is devoted to processing macular information.
The loss of central vision profoundly affects visual functioning. It is quite difficult, for example, to read without central vision. Pictures that attempt to depict the central visual loss of macular degeneration with a black spot do not really do justice to the devastating nature of the visual loss. This can be demonstrated by printing letters six inches high on a piece of paper and attempting to identify them while looking straight ahead and holding the paper slightly to the side. Most people find this difficult to do.