Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The classical LFS malignancies - sarcoma, cancers of the breast, brain and adrenal glands - comprise about 80% of all cancers that occur in this syndrome.
The risk of developing any invasive cancer (excluding skin cancer) is ~50% by age 30 (1% in the general population) and is 90% by age 70. Early onset breast cancer accounts for 25% of all the cancers in this syndrome. This is followed by soft tissue sarcomas (20%), bone sarcoma (15%) and brain tumors - especially glioblastomas - (13%). Other tumours seen in this syndrome include leukemia, lymphoma and adrenocortical carcinoma.
~90% of females with LFS develop breast cancer by age 60 years; the majority of these occur before age 45 years. Females with this syndrome have almost a 100% lifetime risk of developing cancer. This compares with 73% for affected males. The difference may be due to much smaller breast tissue in males as well as increased estrogen levels in females.
The risks of sarcoma, female breast cancer and haematopoietic malignancies in mutation carriers are more than 100 times greater than those seen in the general population.
Other tumours reported in this syndrome but not yet proved to be linked with it include melanoma, Wilm's and other kidney tumors, hepatacellular carcinoma, gonadal germ cell, pancreatic, gastric, choroid plexus, colorectal and prostate cancers.
80% of children with adrenocortical carcinoma and 2%-10% of childhood brain tumors have p53 mutations.
2%-3% of osteosarcomas, 9% rhabdomyosarcomas and 7%-20% patients with multiple primary tumors have p53 mutations.
Although most cases of this syndrome have early onset of cancer, cases have also been reported later in life.
Gardner syndrome, also known as Gardner's syndrome or familial colorectal polyposis, is an autosomal dominant form of polyposis characterized by the presence of multiple polyps in the colon together with tumors outside the colon. The extracolonic tumors may include osteomas of the skull, thyroid cancer, epidermoid cysts, fibromas, as well as the occurrence of desmoid tumors in approximately 15% of affected individuals.
Desmoid tumors are fibrous tumors which usually occur in the tissue covering the intestines and may be provoked by surgery to remove the colon. The countless polyps in the colon predispose to the development of colon cancer; if the colon is not removed, the chance of colon cancer is considered to be very significant. Polyps may also grow in the stomach, duodenum, spleen, kidneys, liver, mesentery and small bowel. In a small number of cases, polyps have also appeared in the cerebellum. Cancers related to Gardner syndrome commonly appear in the thyroid, liver and kidneys. The number of polyps increases with age, and hundreds to thousands of polyps can develop in the colon.
The syndrome was first described in 1951. There is no cure at this time, and in its more advanced forms, it is considered a terminal diagnosis with a life expectancy of 35–45 years; treatments are surgery and palliative care, although some chemotherapy has been tried with limited success.
Birt–Hogg–Dubé syndrome affects the skin and increases the risk of tumors in the kidneys and lungs. The condition is characterized by multiple noncancerous dome-shaped tumors of the hair follicles (fibrofolliculomas), particularly on the face, neck, and—more rarely—the upper chest. The fibrofolliculomas are generally described as having an opaque white color or a yellowish tone and have a waxy, smooth texture. The tumors are always found on and around the nose and on and behind the outer ear. Typically, they first appear in a person's 20s or 30s, and are found in more than 80% of people with the syndrome above the age of 40. The tumors become larger and more numerous over time. Tumors differ between individuals: they may appear merged in plaques, look similar to a comedo with a plug of keratin, or include epidermoid cysts. A large number of tumors on the face can be associated with hyperseborrhea (abnormally elevated sebum production). The presence of fibrofolliculomas on a person's face can cause significant psychological distress.
Other tumors can include trichodiscomas (tumors of the hair disc, which may be identical to fibrofolliculomas), angiofibromas, and perifollicular fibromas. However, angiofibromas are more common in tuberous sclerosis. Along with the tumors, other skin conditions are seen in people with Birt–Hogg–Dubé syndrome. Approximately 40% of people or families with the disease have papules in their mouth, which can be located on the cheeks (buccal mucosa), tongue, gums, or lips. Either white or mucosa-colored, they are discrete, small, and soft and consist of fibrous tissue covered in thickened epithelium. Collagenomas of the skin are also found in some families. Many people with BHD have skin lesions that appear to be acrochordons (skin tags), but may instead be fibrofolliculomas. These lesions are usually found in the armpit, on the eyelids, and in folds of skin. Not all individuals develop the facial tumors; some families with the mutation that causes BHD develop only kidney tumors or spontaneous pneumothorax.
People over 20 years of age with Birt–Hogg–Dubé syndrome have an increased risk of developing slow-growing kidney tumors (chromophobe renal carcinoma and renal oncocytoma, respectively), kidney cysts, and possibly tumors in other organs and tissues. These tumors often occur in both kidneys and in multiple locations in each kidney. The average number of kidney tumors found in a person with BHD is 5.3, though up to 28 tumors have been found. Hybrid oncocytoma/chromophobe carcinoma, found in 50% of cases, is the most commonly found cancer, followed by chromophobe renal carcinoma, clear cell renal carcinoma, renal oncocytoma, and papillary renal cell carcinoma. People over 40 years old and men are more likely to develop kidney tumors, which are diagnosed at a median age of 48. Kidney cancer associated with BHD have been diagnosed in people at ages as young as 20.
In general, people with Birt–Hogg–Dubé syndrome are at roughly seven times the risk of kidney cancer compared to the unaffected population. Estimates of the incidence among people with the disease range from 14%–34%. Rarely, it is associated with clear cell renal cell carcinoma and papillary renal cell carcinoma. If it develops in someone with BHD, renal cell carcinoma occurs later in life and has a poor prognosis. Though the types of tumor typically associated with BHD are considered less aggressive, cases of advanced or metastatic kidney cancer have been observed in people with the syndrome. Both benign and cancerous tumors can reduce kidney function over time as they grow larger.
Li–Fraumeni syndrome is diagnosed if the following three criteria are met:
- the patient has been diagnosed with a sarcoma at a young age (below 45),
- a first-degree relative has been diagnosed with any cancer at a young age (below 45), and
- another first-degree or a second-degree relative has been diagnosed with any cancer at a young age (below 45) or with a sarcoma at any age.
Other criteria have also been proposed:
- a proband with any childhood cancer or sarcoma, brain tumor or adrenal cortical carcinoma diagnosed before age 45
- a first or second degree relative with a typical LFS malignancy (sarcoma, leukaemia, or cancers of the breast, brain or adrenal cortex) regardless of age at diagnosis
and/or
- a first or second degree relative with any cancer diagnosed before age 60.
A third criterion has been proposed
- two first or second degree relatives with LFS-related malignancies at any age.
Muir–Torre syndrome (MTS) is a rare hereditary, autosomal dominant cancer syndrome that is thought to be a subtype of HNPCC. Individuals are prone to develop cancers of the colon, genitourinary tract, and skin lesions, such as keratoacanthomas and sebaceous tumors. The genes affected are MLH1, MSH2, and more recently, MSH6, and are involved in DNA mismatch repair.
Muir–Torre syndrome is characterized by both:
1. At least a single sebaceous gland tumor (either an adenoma, an epithelioma, or a carcinoma)
2. A minimum of one internal malignancy
The Amsterdam criteria are frequently used to diagnose Lynch syndrome and Muir–Torre syndrome. They include the following:
- 3 or more relatives with an HNPCC-associated cancer (i.e., colorectal, cancer of the endometrium, small bowel, ureter, or renal pelvis)
- 2 or more successive generations affected by cancer
- 1 or more persons with cancer is a first-degree relative of the other 2, at least 1 case of colorectal cancer younger than age 50 years, a diagnosis of familial adenomatous polyposis has been excluded, tumors are verified by histologic examination
Muir–Torre syndrome is a genetic condition. Mutations in MLH1 and MSH2 are linked with the disease. These genes code for DNA mismatch repair genes, and mutations increase the risk of developing cancerous qualities.
Many patients who have sebaceous neoplasms with mutations in MSH2 and MLH1 do not in fact have Muir–Torre syndrome. The Mayo Muir–Torre risk score was devised to improve the positive predictive value of immunohistochemistry and reduce the false positive rate.
The Mayo Muir–Torre Risk score assigns points based several characteristics. A score of 2 or greater has a high positive predictive value of Muir–Torre syndrome. A score of 1 or lower is less likely to be Muir–Torre syndrome.
Age of onset of first sebaceous neoplasm: <60 years = 1 point, otherwise 0 points
Total number of sebaceous neoplasms: 1 = 0 points, >2 = 2 points.
Personal history of Lynch related cancers: No = 0 points, Yes = 1 point
Family history of Lynch-related cancer: No = 0 points, Yes = 1 point
The most common internal malignancies associated with Muir–Torre syndrome are: Colorectal (56%), Urogenital (22%), Small Intestine (4%), and Breast (4%). A variety of other internal malignancies have been reported.
A cancer syndrome or family cancer syndrome is a genetic disorder in which inherited genetic mutations in one or more genes predispose the affected individuals to the development of cancers and may also cause the early onset of these cancers. Cancer syndromes often show not only a high lifetime risk of developing cancer, but also the development of multiple independent primary tumors. Many of these syndromes are caused by mutations in tumor suppressor genes, genes that are involved in protecting the cell from turning cancerous. Other genes that may be affected are DNA repair genes, oncogenes and genes involved in the production of blood vessels (angiogenesis). Common examples of inherited cancer syndromes are hereditary breast-ovarian cancer syndrome and hereditary non-polyposis colon cancer (Lynch syndrome).
Gardner syndrome consists of adenomatous polyps of the gastrointestinal tract, desmoid tumours, osteomas, epidermoid cysts, lipomas, dental abnormalities and periampullary carcinomas. The incidence of the syndrome is 1:14,025 with an equal sex distribution. It is determined by the autosomal dominant familial polyposis coli gene (APC) on chromosome
5.
Gardner syndrome can be identified based on oral findings, including multiple impacted and supernumerary teeth, multiple jaw osteomas which give a "cotton-wool" appearance to the jaws, as well as multiple odontomas, congenital
hypertrophy of the retinal pigment epithelium (CHRPE), in addition to multiple adenomatous polyps of the colon. Gardner syndrome is also associated with familial adenomatous polyposis and may manifest as aggressive fibromatosis (desmoid tumors) of the retroperitoneum.
Desmoid tumors arise most frequently from the aponeurosis of the rectus abdominal muscle of multiparous women. The extra-abdominal form is rare and desmoids of the breast may arise in the mammary gland or may occur as an extension of a lesion arising from the muscles of the chest wall. The incidence of mammary desmoid tumours is less than 0.2% of primary breast neoplasms.
In Gardner’s syndrome the incidence ranges from 4% to 17%. Desmoid tumours associated with Gardner’s syndrome have been shown to have an alteration of the β-catenin pathway and over express β-catenin.
The risks associated with this syndrome include a strong tendency of developing cancer in a number of parts of the body. While the hamartomatous polyps themselves only have a small malignant potential (<3% - OHCM), patients with the syndrome have an increased risk of developing carcinomas of the pancreas, liver, lungs, breast, ovaries, uterus, testicles and other organs.
The average age of first diagnosis is 23, but the lesions can be identified at birth by an astute pediatrician or family physician. Prior to puberty, the mucocutaneous lesions can be found on the palms and soles. Often the first presentation is a bowel obstruction from an intussusception which is a common cause of mortality; an intussusception is a telescoping of one loop of bowel into another segment.
MEN2 can present with a sign or symptom related to a tumor or, in the case of multiple endocrine neoplasia type 2b, with characteristic musculoskeletal and/or lip and/or gastrointestinal findings.Medullary thyroid carcinoma (MTC) represent the most frequent initial diagnosis. Occasionally pheochromocytoma or primary hyperparathyroidism may be the initial diagnosis.
Pheochromocytoma occurs in 33-50% of MEN2 cases. In MEN2A, primary hyperparathyroidism occurs in 10–50% of cases and is usually diagnosed after the third decade of life. Rarely, it may present in childhood or be the sole clinical manifestation of this syndrome.
MEN2A associates medullary thyroid carcinoma with pheochromocytoma in about 20–50% of cases and with primary hyperparathyroidism in 5–20% of cases.MEN2B associates medullary thyroid carcinoma with pheochromocytoma in 50% of cases, with marfanoid habitus and with mucosal and digestive neurofibromatosis.
In familial isolated medullary thyroid carcinoma the other components of the disease are absent.
In a review of 85 patients 70 had Men2A and 15 had Men2B. The initial manifestation of MEN2 was medullary thyroid carcinoma in 60% of patients, medullary thyroid carcinoma synchronous with pheochromocytoma in 34% and pheochromocytoma alone in 6%. 72% had bilateral pheochromocytomas.
Multiple endocrine neoplasia type 2 (MEN2) (also known as "Pheochromocytoma and amyloid producing medullary thyroid carcinoma", "PTC syndrome," and "Sipple syndrome") is a group of medical disorders associated with tumors of the endocrine system. The tumors may be benign or malignant (cancer). They generally occur in endocrine organs (e.g. thyroid, parathyroid, and adrenals), but may also occur in endocrine tissues of organs not classically thought of as endocrine.
MEN2 is a sub-type of MEN (multiple endocrine neoplasia) and itself has sub-types, as discussed below.
Peutz–Jeghers syndrome (often abbreviated PJS) is an autosomal dominant genetic disorder characterized by the development of benign hamartomatous polyps in the gastrointestinal tract and hyperpigmented macules on the lips and oral mucosa (melanosis). This syndrome can be classed as one of various hereditary intestinal polyposis syndromes and one of various hamartomatous polyposis syndromes. It has an incidence of approximately 1 in 25,000 to 300,000 births.
Nominally, the disease consists of multiple enchondromas which usually develop in childhood. The growth of these enchondromas usually stops after skeletal maturation. The affected extremity is shortened (asymmetric dwarfism) and sometimes bowed due to epiphyseal fusion anomalies. Persons with Ollier disease are prone to breaking bones and normally have swollen, aching limbs.
Hereditary breast–ovarian cancer syndromes (HBOC) are cancer syndromes that produce higher than normal levels of breast cancer and ovarian cancer in genetically related families (either one individual had both, or several individuals in the pedigree had one or the other disease). The hereditary factors may be proven or suspected to cause the pattern of breast and ovarian cancer occurrences in the family.
Hereditary cancer syndromes underlie 5 to 10% of all cancers. Scientific understanding of cancer susceptibility syndromes is actively expanding: additional syndromes are being found, the underlying biology is becoming clearer, and commercialization of diagnostic genetics methodology is improving clinical access. Given the prevalence of breast and colon cancer, the most widely recognized syndromes include hereditary breast-ovarian cancer syndrome (HBOC) and hereditary non-polyposis colon cancer (HNPCC, Lynch syndrome).
Some rare cancers are strongly associated with hereditary cancer predisposition syndromes. Genetic testing should be considered with adrenocortical carcinoma; carcinoid tumors; diffuse gastric cancer; fallopian tube/primary peritoneal cancer; leiomyosarcoma; medullary thyroid cancer; paraganglioma/pheochromocytoma; renal cell carcinoma of chromophobe, hybrid oncocytic, or oncocytoma histology; sebaceous carcinoma; and sex cord tumors with annular tubules. Primary care physicians can identify people who are at risk of heridatary cancer syndrome.
The following diseases manifest by means of endocrine dysfunction: Cushing syndrome, syndrome of inappropriate antidiuretic hormone, hypercalcemia, hypoglycemia, carcinoid syndrome, and hyperaldosteronism.
Costello syndrome, also called faciocutaneoskeletal syndrome or FCS syndrome, is a rare genetic disorder that affects many parts of the body. It is characterized by delayed development and delayed mental progression, distinctive facial features, unusually flexible joints, and loose folds of extra skin, especially on the hands and feet. Heart abnormalities are common, including a very fast heartbeat (tachycardia), structural heart defects, and overgrowth of the heart muscle (hypertrophic cardiomyopathy). Infants with Costello syndrome may be large at birth, but grow more slowly than other children and have difficulty feeding. Later in life, people with this condition have relatively short stature and many have reduced levels of growth hormones. It is a RASopathy.
Beginning in early childhood, people with Costello syndrome have an increased risk of developing certain cancerous and noncancerous tumors. Small growths called papillomas are the most common noncancerous tumors seen with this condition. They usually develop around the nose and mouth or near the anus. The most frequent cancerous tumor associated with Costello syndrome is a soft tissue tumor called a rhabdomyosarcoma. Other cancers also have been reported in children and adolescents with this disorder, including a tumor that arises in developing nerve cells (neuroblastoma) and a form of bladder cancer (transitional cell carcinoma).
Costello Syndrome was discovered by Dr Jack Costello, a New Zealand Paediatrician in 1977. He is credited with first reporting the syndrome in the Australian Paediatric Journal, Volume 13, No.2 in 1977.
Ollier disease is a rare nonhereditary sporadic disorder where intraosseous benign cartilaginous tumors (enchondroma) develop close to growth plate cartilage. Prevalence is estimated at around 1 in 100,000.
The following diseases manifest by means of neurological dysfunction: Lambert-Eaton myasthenic syndrome, paraneoplastic cerebellar degeneration, encephalomyelitis, limbic encephalitis, brainstem encephalitis, opsoclonus myoclonus ataxia syndrome, anti-NMDA receptor encephalitis, and polymyositis.
Most patients with fundic gland polyps (FGPs) do not have any symptoms, and the diagnosis is made on gastroscopy done for other reasons. Retrospective analysis of patients with sporadic FGPs shows that a high percentage do have symptoms, but that this is more likely to be related to the underlying disease responsible for the polyposis. These symptoms include:
- epigastric pain
- nausea
- vomiting
- weight loss
The polyps on endoscopy are usually tiny, numerous and sessile, and usually scattered throughout the fundus of the stomach, where parietal cells are more numerous. They have the same colour as the gastric mucosa, and never have a stalk.
When the polyps are biopsied, the pathology typically shows shortened gastric pits, and both superficial and deep cystic lesions in the fundic glands, lined by all three types of cells of acid-producing mucosa: mucous, parietal and chief cells. As sometimes parietal cell hyperplasia may develop deep dilations of gland, one should be really strict in the diagnosis of FGPs (i.e. the presence of deep and superficial dilations). Infrequently, the two lesions may coexist. Foci of dysplasia can sometimes be seen.
Polyps are most frequent in the stomach and large intestine, are also found in the small intestine, and are least frequent in the esophagus. A biopsy will reveal them to be hamartomas; the possibility that they progress to cancer is generally considered to be low, although it has been reported multiple times in the past. Chronic diarrhea and protein-losing enteropathy are often observed. Possible collateral features include variable anomalies of ectodermal tissues, such as alopecia, atrophy of the nails, or skin pigmentation
Hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome is an autosomal dominant genetic condition that has a high risk of colon cancer as well as other cancers including endometrial cancer (second most common), ovary, stomach, small intestine, hepatobiliary tract, upper urinary tract, brain, and skin. The increased risk for these cancers is due to inherited mutations that impair DNA mismatch repair. It is a type of cancer syndrome.
Most children with BWS do not have all of these five features. In addition, some children with BWS have other findings including: nevus flammeus, prominent occiput, midface hypoplasia, hemihypertrophy, genitourinary anomalies (enlarged kidneys), cardiac anomalies, musculoskeletal abnormalities, and hearing loss. Also, some premature newborns with BWS do not have macroglossia until closer to their anticipated delivery date.
Given the variation among individuals with BWS and the lack of a simple diagnostic test, identifying BWS can be difficult. In an attempt to standardize the classification of BWS, DeBaun et al. have defined a child as having BWS if the child has been diagnosed by a physician as having BWS and if the child has at least two of the five common features associated with BWS (macroglossia, macrosomia, midline abdominal wall defects, ear creases/ear pits, neonatal hypoglycemia). Another definition presented by Elliot et al. includes the presence of either three major features (anterior abdominal wall defect, macroglossia, or prepostnatal overgrowth) or two major plus three minor findings (ear pits, nevus flammeus, neonatal hypoglycemia, nephromegaly, or hemihyperplasia).
While most children with BWS do not develop cancer, children with BWS do have a significantly increased risk of cancer. Children with BWS are most at risk during early childhood and should receive cancer screening during this time.
In general, children with BWS do very well and grow up to become adults of normal size and intelligence, usually without the syndromic features of their childhood.
Beckwith–Wiedemann syndrome (; abbreviated BWS) is an overgrowth disorder usually present at birth, characterized by an increased risk of childhood cancer and certain congenital features.
Common features used to define BWS are:
- macroglossia (large tongue),
- macrosomia (above average birth weight and length),
- microcephaly
- midline abdominal wall defects (omphalocele/exomphalos, umbilical hernia, diastasis recti),
- ear creases or ear pits,
- neonatal hypoglycemia (low blood sugar after birth).
- Hepatoblastoma