Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Almost all women present with uterine fibroids, approximately 76% with dermal manifestations and 10-16% with renal tumors.
The uterine fibroids tend to occur at younger age and larger and more numerous than in general population. They may be distinguishable from sporadic fibroids by special histological features such as prominent nucleoli with perinucleolar halos.
The skin presentation is of asymmetrical, reddish-brown nodules or papules with a firm consistency, predominantly located on the limbs (multiple cutaneous leiomyoma), although they may occur anywhere, including the face. The lesions, which are typically painful and most often present during the third decade of life, are piloleiomyomata—a benign smooth muscle tumour arising from the arrectores pilorum muscles of the skin. These tumours may also arise in the tunica dartos of the scrotum and the mammillary muscle of the nipple (genital leiomyoma), the smooth muscle of blood vessels (angioleiomyoma) and the lung (pulmonary lymphangioleiomyomatosis). A pseudo-Darier sign may be present.
The renal cell carcinoma tends to be of the papillary (type 2) form and tends to occur more commonly in women than men with this syndrome. These cancers present earlier than is usual for renal cell carcinomas (typically in the twenties and thirties) and to be at relatively advanced stages at presentation. Tumours have rarely been reported in children. These tumours occur in ~20% of those with this mutation suggesting that other factors are involved in the pathogenesis.
The classical LFS malignancies - sarcoma, cancers of the breast, brain and adrenal glands - comprise about 80% of all cancers that occur in this syndrome.
The risk of developing any invasive cancer (excluding skin cancer) is ~50% by age 30 (1% in the general population) and is 90% by age 70. Early onset breast cancer accounts for 25% of all the cancers in this syndrome. This is followed by soft tissue sarcomas (20%), bone sarcoma (15%) and brain tumors - especially glioblastomas - (13%). Other tumours seen in this syndrome include leukemia, lymphoma and adrenocortical carcinoma.
~90% of females with LFS develop breast cancer by age 60 years; the majority of these occur before age 45 years. Females with this syndrome have almost a 100% lifetime risk of developing cancer. This compares with 73% for affected males. The difference may be due to much smaller breast tissue in males as well as increased estrogen levels in females.
The risks of sarcoma, female breast cancer and haematopoietic malignancies in mutation carriers are more than 100 times greater than those seen in the general population.
Other tumours reported in this syndrome but not yet proved to be linked with it include melanoma, Wilm's and other kidney tumors, hepatacellular carcinoma, gonadal germ cell, pancreatic, gastric, choroid plexus, colorectal and prostate cancers.
80% of children with adrenocortical carcinoma and 2%-10% of childhood brain tumors have p53 mutations.
2%-3% of osteosarcomas, 9% rhabdomyosarcomas and 7%-20% patients with multiple primary tumors have p53 mutations.
Although most cases of this syndrome have early onset of cancer, cases have also been reported later in life.
A cancer syndrome or family cancer syndrome is a genetic disorder in which inherited genetic mutations in one or more genes predispose the affected individuals to the development of cancers and may also cause the early onset of these cancers. Cancer syndromes often show not only a high lifetime risk of developing cancer, but also the development of multiple independent primary tumors. Many of these syndromes are caused by mutations in tumor suppressor genes, genes that are involved in protecting the cell from turning cancerous. Other genes that may be affected are DNA repair genes, oncogenes and genes involved in the production of blood vessels (angiogenesis). Common examples of inherited cancer syndromes are hereditary breast-ovarian cancer syndrome and hereditary non-polyposis colon cancer (Lynch syndrome).
Reed’s syndrome (or familial leiomyomatosis cutis et uteri) is a rare inherited condition characterised by multiple cutaneous leiomyomas and, in women, uterine leiomyomas. It predisposes for renal cell cancer, an association denominated hereditary leiomyomatosis and renal cell cancer, and it is also associated with increased risk of uterine leiomyosarcoma. The syndrome is caused by a mutation in the fumarate hydratase gene, which leads to an accumulation of fumarate. The inheritance pattern is autosomal dominant.
AMS has been described by multiple authors and institutions, and various definitions have been adopted. According to Newton et al., a scoring system allotting one point per feature establishes AMS with scores greater than or equal to 3. The features include: 1) two or more clinically atypical nevi, 2) more than 100 nevi in patients between 20 and 50 years of age, 3) more than 50 nevi in patients under 20 years of age or more than 50 years of age, 4) more than one nevus in buttocks or instep, 5) nevi on the anterior scalp, 6) one or more pigmented lesions in the iris.
The Classical (1990) definition uses the following criteria: 1) 100 or more melanocytic nevi, 2) one or more melanocytic nevi greater than or equal to 8mm in its largest diameter, and 3) one or more clinically atypical melanocytic nevi.
The National Institutes of Health (NIH) Consensus 1992 definition, which is still controversial, requires a family history of melanoma, in addition to a large number of melanocytic nevi (often greater than 50) and melanocytic nevi that present certain histological features.
Dysplastic nevus syndrome (also known as "atypical mole syndrome (AMS)", "familial atypical multiple mole–melanoma (FAMMM) syndrome", "familial melanoma syndrome", and "B-K mole syndrome") is a cutaneous condition described in certain families, and characterized by unusual nevi and multiple inherited melanomas.
Li–Fraumeni syndrome is diagnosed if the following three criteria are met:
- the patient has been diagnosed with a sarcoma at a young age (below 45),
- a first-degree relative has been diagnosed with any cancer at a young age (below 45), and
- another first-degree or a second-degree relative has been diagnosed with any cancer at a young age (below 45) or with a sarcoma at any age.
Other criteria have also been proposed:
- a proband with any childhood cancer or sarcoma, brain tumor or adrenal cortical carcinoma diagnosed before age 45
- a first or second degree relative with a typical LFS malignancy (sarcoma, leukaemia, or cancers of the breast, brain or adrenal cortex) regardless of age at diagnosis
and/or
- a first or second degree relative with any cancer diagnosed before age 60.
A third criterion has been proposed
- two first or second degree relatives with LFS-related malignancies at any age.
Hereditary cancer syndromes underlie 5 to 10% of all cancers. Scientific understanding of cancer susceptibility syndromes is actively expanding: additional syndromes are being found, the underlying biology is becoming clearer, and commercialization of diagnostic genetics methodology is improving clinical access. Given the prevalence of breast and colon cancer, the most widely recognized syndromes include hereditary breast-ovarian cancer syndrome (HBOC) and hereditary non-polyposis colon cancer (HNPCC, Lynch syndrome).
Some rare cancers are strongly associated with hereditary cancer predisposition syndromes. Genetic testing should be considered with adrenocortical carcinoma; carcinoid tumors; diffuse gastric cancer; fallopian tube/primary peritoneal cancer; leiomyosarcoma; medullary thyroid cancer; paraganglioma/pheochromocytoma; renal cell carcinoma of chromophobe, hybrid oncocytic, or oncocytoma histology; sebaceous carcinoma; and sex cord tumors with annular tubules. Primary care physicians can identify people who are at risk of heridatary cancer syndrome.
Antineoplastic resistance, often used interchangeably with chemotherapy resistance, is the multiple drug resistance of neoplastic (cancerous) cells, or the ability of cancer cells to survive and grow despite anti-cancer therapies.
There are two general causes of antineoplastic therapy failure: Inherent genetic characteristics, giving cancer cells their resistance, which is rooted in the concept of cancer cell heterogeneity and acquired resistance after drug exposure. Altered membrane transport, enhanced DNA repair, apoptotic pathway defects, alteration of target molecules, protein and pathway mechanisms, such as enzymatic deactivation.
Since cancer is a genetic disease, two genomic events underlie acquired drug resistance: Genome alterations (e.g. gene amplification and deletion) and epigenetic modifications.
Cancer cells are constantly using a variety of tools, involving genes, proteins and altered pathways, to ensure their survival against antineoplastic drugs.
Anaplastic thyroid cancer (ATC) is a form of thyroid cancer which has a very poor prognosis due to its aggressive behavior and resistance to cancer treatments. Its anaplastic cells have poor differentiation, including dedifferentiation.
Anaplastic tumors have a high mitotic rate and lymphovascular invasion. They rapidly invade surrounding tissues (such as the trachea). The presence of regional lymphadenopathy in older patients in whom needle aspiration biopsy reveals characteristic vesicular appearance of the nuclei would support a diagnosis of anaplastic carcinoma.
It is always considered as stage IV.
Pediatric ependymomas are similar in nature to the adult form of ependymoma in that they are thought to arise from radial glial cells lining the ventricular system. However, they differ from adult ependymomas in which genes and chromosomes are most often affected, the region of the brain they are most frequently found in, and the prognosis of the patients. Children with certain hereditary diseases, such as neurofibromatosis type II (NF2), have been found to be more frequently afflicted with this class of tumors, but a firm genetic link remains to be established. Symptoms associated with the development of pediatric ependymomas are varied, much like symptoms for a number of other pediatric brain tumors including vomiting, headache, irritability, lethargy, and changes in gait. Although younger children and children with invasive tumor types generally experience less favorable outcomes, total removal of the tumors is the most conspicuous prognostic factor for both survival and relapse.
Cancer of unknown primary origin (CUP, "occult cancer") is a cancer that is determined to be at the metastatic stage at the time of diagnosis, but a primary tumor cannot be identified. A diagnosis of CUP requires a clinical picture consistent with metastatic disease and one or more biopsy results inconsistent with a primary tumor.
CUP is found in about 3 to 5% of all people diagnosed with invasive cancer, and carries a poor prognosis in most (80 to 85%) of those circumstances. The other 15 to 20% of patients, however, have a relatively long survival with appropriate treatment.
Most cancers typically present as a single primary tumor. Over the course of time—particularly if the primary tumor is left untreated—smaller "satellite" tumors will appear at other places in the body, a phenomenon known as metastasis. Less commonly, a metastatic tumor is found first; but in most such cases, the primary tumor can then be located via examination and testing. Rarely (3-5% of the time), the primary tumor cannot be found because it is too small, or because it has regressed due to immune system activity or other factors. In such situations a diagnosis of cancer of unknown primary origin (CUP) is made.
CUP usually comes to attention because of masses or swellings found somewhere in the body, either by physical examination or on medical imaging performed for another indication. The disease typically develops rapidly, and metastases may occur in places in the body that are otherwise unusual. Comprehensive physical examination is part of the process to identify a possible primary source of cancer; this should include the breasts, lymph nodes, the skin, external genitals, as well as an internal examination of the rectum and of the pelvic organs.
The location of metastases may be a clue as to the underlying source, even if this cannot be found on investigations. For instance, a woman in whom there is axillary lymphadenopathy (swelling in the lymph nodes of the armpit) it is likely that the cancer originated in the breast, and men with lymph node deposits in the mediastinum of the chest and/or retroperitoneal space of the abdomen may have a germ cell tumor.
Muir–Torre syndrome (MTS) is a rare hereditary, autosomal dominant cancer syndrome that is thought to be a subtype of HNPCC. Individuals are prone to develop cancers of the colon, genitourinary tract, and skin lesions, such as keratoacanthomas and sebaceous tumors. The genes affected are MLH1, MSH2, and more recently, MSH6, and are involved in DNA mismatch repair.
Howel–Evans syndrome is an extremely rare condition involving thickening of the skin in the palms of the hands and the soles of the feet (hyperkeratosis). This familial disease is associated with a high lifetime risk of esophageal cancer. For this reason, it is sometimes known as tylosis with oesophageal cancer (TOC).
The condition is inherited in an autosomal dominant manner, and it has been linked to a mutation in the "RHBDF2" gene. It was first described in 1958.
The first symptoms of neuroblastoma are often vague making diagnosis difficult. Fatigue, loss of appetite, fever, and joint pain are common. Symptoms depend on primary tumor locations and metastases if present:
- In the abdomen, a tumor may cause a swollen belly and constipation.
- A tumor in the chest may cause breathing problems.
- A tumor pressing on the spinal cord may cause weakness and thus an inability to stand, crawl, or walk.
- Bone lesions in the legs and hips may cause pain and limping.
- A tumor in the bones around the eyes or orbits may cause distinct bruising and swelling.
- Infiltration of the bone marrow may cause pallor from anemia.
Neuroblastoma often spreads to other parts of the body before any symptoms are apparent and 50 to 60% of all neuroblastoma cases present with metastases.
The most common location for neuroblastoma to originate (i.e., the primary tumor) is in the adrenal glands. This occurs in 40% of localized tumors and in 60% of cases of widespread disease. Neuroblastoma can also develop anywhere along the sympathetic nervous system chain from the neck to the pelvis. Frequencies in different locations include: neck (1%), chest (19%), abdomen (30% non-adrenal), or pelvis (1%). In rare cases, no primary tumor can be discerned.
Rare but characteristic presentations include transverse myelopathy (tumor spinal cord compression, 5% of cases), treatment-resistant diarrhea (tumor vasoactive intestinal peptide secretion, 4% of cases), Horner's syndrome (cervical tumor, 2.4% of cases), opsoclonus myoclonus syndrome and ataxia (suspected paraneoplastic cause, 1.3% of cases), and hypertension (catecholamine secretion or renal artery compression, 1.3% of cases).
Hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome is an autosomal dominant genetic condition that has a high risk of colon cancer as well as other cancers including endometrial cancer (second most common), ovary, stomach, small intestine, hepatobiliary tract, upper urinary tract, brain, and skin. The increased risk for these cancers is due to inherited mutations that impair DNA mismatch repair. It is a type of cancer syndrome.
The differential diagnosis is quite extensive and includes
- Buschke–Fischer–Brauer disease
- Curth–Macklin ichthyosis
- Gamborg Nielsen syndrome
- Greither disease
- Haber syndrome
- Hereditary punctate palmoplantar keratoderma
- Jadassohn–Lewandowsky syndrome
- Keratosis follicularis spinulosa decalvans
- Keratosis linearis with ichthyosis congenital and sclerosing keratoderma syndrome
- Meleda disease
- Mucosa hyperkeratosis syndrome
- Naegeli–Franceschetti–Jadassohn syndrome
- Naxos disease
- Olmsted syndrome
- Palmoplantar keratoderma and leukokeratosis anogenitalis
- Pandysautonomia
- Papillomatosis of Gougerot and Carteaud
- Papillon–Lefèvre syndrome
- Punctate porokeratotic keratoderma
- Richner–Hanhart syndrome
- Schöpf–Schulz–Passarge syndrome
- Unna Thost disease
- Vohwinkel syndrome
- Wong's dermatomyositis
The most common cancers in children are (childhood) leukemia (32%), brain tumors (18%), and lymphomas (11%). In 2005, 4.1 of every 100,000 young people under 20 years of age in the U.S. were diagnosed with leukemia, and 0.8 per 100,000 died from it. The number of new cases was highest among the 1–4 age group, but the number of deaths was highest among the 10–14 age group.
In 2005, 2.9 of every 100,000 people 0–19 years of age were found to have cancer of the brain or central nervous system, and 0.7 per 100,000 died from it. These cancers were found most often in children between 1 and 4 years of age, but the most deaths occurred among those aged 5–9. The main subtypes of brain and central nervous system tumors in children are: astrocytoma, brain stem glioma, craniopharyngioma, desmoplastic infantile ganglioglioma, ependymoma, high-grade glioma, medulloblastoma and atypical teratoid rhabdoid tumor.
Other, less common childhood cancer types are:
- Neuroblastoma (6%, nervous system)
- Wilms tumor (5%, kidney)
- Non-Hodgkin lymphoma (4%, blood)
- Childhood rhabdomyosarcoma (3%, many sites)
- Retinoblastoma (3%, eye)
- Osteosarcoma (3%, bone cancer)
- Ewing sarcoma (1%, many sites)
- Germ cell tumors (5%, many sites)
- Pleuropulmonary blastoma (lung or pleural cavity)
- Hepatoblastoma and hepatocellular carcinoma (liver cancer)
Mismatch repair cancer syndrome (MMRCS) is a cancer syndrome associated with biallelic DNA mismatch repair mutations. It is also known as Turcot syndrome (after Jacques Turcot, who described the condition in 1959) and by several other names.
In MMRCS, neoplasia typically occurs in both the gut and the central nervous system (CNS). In the large intestine, familial adenomatous polyposis occurs; in the CNS, brain tumors.
Muir–Torre syndrome is characterized by both:
1. At least a single sebaceous gland tumor (either an adenoma, an epithelioma, or a carcinoma)
2. A minimum of one internal malignancy
The Amsterdam criteria are frequently used to diagnose Lynch syndrome and Muir–Torre syndrome. They include the following:
- 3 or more relatives with an HNPCC-associated cancer (i.e., colorectal, cancer of the endometrium, small bowel, ureter, or renal pelvis)
- 2 or more successive generations affected by cancer
- 1 or more persons with cancer is a first-degree relative of the other 2, at least 1 case of colorectal cancer younger than age 50 years, a diagnosis of familial adenomatous polyposis has been excluded, tumors are verified by histologic examination
Muir–Torre syndrome is a genetic condition. Mutations in MLH1 and MSH2 are linked with the disease. These genes code for DNA mismatch repair genes, and mutations increase the risk of developing cancerous qualities.
Many patients who have sebaceous neoplasms with mutations in MSH2 and MLH1 do not in fact have Muir–Torre syndrome. The Mayo Muir–Torre risk score was devised to improve the positive predictive value of immunohistochemistry and reduce the false positive rate.
The Mayo Muir–Torre Risk score assigns points based several characteristics. A score of 2 or greater has a high positive predictive value of Muir–Torre syndrome. A score of 1 or lower is less likely to be Muir–Torre syndrome.
Age of onset of first sebaceous neoplasm: <60 years = 1 point, otherwise 0 points
Total number of sebaceous neoplasms: 1 = 0 points, >2 = 2 points.
Personal history of Lynch related cancers: No = 0 points, Yes = 1 point
Family history of Lynch-related cancer: No = 0 points, Yes = 1 point
The most common internal malignancies associated with Muir–Torre syndrome are: Colorectal (56%), Urogenital (22%), Small Intestine (4%), and Breast (4%). A variety of other internal malignancies have been reported.
Tumor hypoxia is the situation where tumor cells have been deprived of oxygen. As a tumor grows, it rapidly outgrows its blood supply, leaving portions of the tumor with regions where the oxygen concentration is significantly lower than in healthy tissues. Hypoxic microenvironements in solid tumors are a result of available oxygen being consumed within 70 to 150 μm of tumour vasculature by rapidly proliferating tumor cells thus limiting the amount of oxygen available to diffuse further into the tumor tissue. In order to support continuous growth and proliferation in challenging hypoxic environments, cancer cells are found to alter their metabolism. Furthermore, hypoxia is known to change cell behavior and is associated with extracellular matrix remodeling and increased migratory and metastatic behavior.
Patients are usually asymptomatic at diagnosis. As a result, disease is often advanced at diagnosis.
Antineoplastic resistance, synonymous with chemotherapy resistance, is the ability of cancer cells to survive and grow despite different anti-cancer therapies, i.e. their multiple drug resistance. There are two general causes of antineoplastic therapy failure:
Inherent resistance, such as genetic characteristics, giving cancer cells their resistance from the beginning, which is rooted in the concept of cancer cell heterogeneity and acquired resistance after drug exposure.