Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms are not seen immediately in cattle due to the diseases’ extremely long incubation period. Some cattle have been observed to have an abnormal gait, changes in behavior, tremors and hyper-responsiveness to certain stimuli. Hindlimb ataxia affects the animal’s gait and occurs when muscle control is lost. This results in poor balance and coordination. Behavioural changes may include aggression, anxiety relating to certain situations, nervousness, frenzy or an overall change in temperament. Some rare but previously observed symptoms also include persistent pacing, rubbing or licking. Additionally, nonspecific symptoms have also been observed which include weight loss, decreased milk production, lameness, ear infections and teeth grinding due to pain. Some animals may show a combination of these symptoms, while others may only be observed demonstrating one of the many reported. Once clinical symptoms arise, they typically get worse over the upcoming weeks and months, eventually leading to recumbency, coma and death.
BSE is a transmissible disease that primarily affects the central nervous system; it is a form of transmissible spongiform encephalopathy, like Creutzfeldt–Jakob disease and kuru in humans and scrapie in sheep, and chronic wasting disease in cervids.
Kuru, a transmissible spongiform encephalopathy, is a disease of the nervous system that causes physiological and neurological effects which ultimately lead to death. It is characterized by progressive cerebellar ataxia, or loss of coordination and control over muscle movements.
The preclinical or asymptomatic phase, also called the incubation period, averages between 10–13 years, but can be as short as 5 and has been estimated to last as long as 50 years or more after initial exposure. The youngest individual recorded to have kuru was 12 years old.
The clinical stage, which begins at the first onset of symptoms, lasts an average of 12 months. The clinical progression of kuru is divided into three specific stages, the ambulant, sedentary and terminal stages. While there is some variation in these stages between individuals, they are highly conserved among the affected population. Before the onset of clinical symptoms, an individual can also present with prodromal symptoms including headache and joint pain in the legs.
In the first (ambulant) stage, the infected individual may exhibit unsteady stance and gait, decreased muscle control, tremors, difficulty pronouncing words (dysarthria), and titubation. This stage is named the ambulant because the individual is still able to walk around despite symptoms.
In the second (sedentary) stage, the infected individual is incapable of walking without support and suffers ataxia and severe tremors. Furthermore, the individual shows signs of emotional instability and depression, yet exhibits uncontrolled and sporadic laughter. Despite the other neurological symptoms, tendon reflexes are still intact at this stage of the disease.
In the third and final (terminal) stage, the infected individual’s existing symptoms, like ataxia, progress to the point where they are no longer capable of sitting without support. New symptoms also emerge: the individual develops dysphagia, or difficulty swallowing, which can lead to severe malnutrition. They may also become incontinent, lose the ability to speak and become unresponsive to their surroundings, despite maintaining consciousness. Towards the end of the terminal stage patients often develop chronic ulcerated wounds that can be easily infected. An infected person usually dies within three months to two years after the first terminal stage symptoms, often because of pneumonia or infection.
Most cases of CWD occur in adult animals; the youngest animal diagnosed with natural CWD was 17 months. The disease is progressive and always fatal. The first signs are difficulties in movement. The most obvious and consistent clinical sign of CWD is weight loss over time. Behavioral changes also occur in the majority of cases, including decreased interactions with other animals, listlessness, lowering of the head, tremors, repetitive walking in set patterns, and nervousness. Excessive salivation and grinding of the teeth also are observed. Most deer show increased drinking and urination; the increased drinking and salivation may contribute to the spread of the disease.
Changes are mild at first; slight behavioural changes and an increase in chewing movements may occur. Ataxia and neurological signs then develop, and affected sheep struggle to keep up with the flock.
Some sheep scratch excessively and show patches of wool loss and lesions on the skin. Scratching sheep over the rump area may lead to a nibbling reflex, which is characteristic for the condition.
Signs of a chronic systemic disease appear later, with weight loss, anorexia, lethargy, and death.
"Post mortem" examination is important for the diagnosis of scrapie. Histology of tissues shows accumulation of prions in the central nervous system, and immunohistochemical staining and ELISA can also be used to demonstrate the protein.
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) of mule deer, white-tailed deer, elk (or "wapiti"), moose, and reindeer. As of 2016, CWD had only been found in members of the deer family. First recognized as a clinical "wasting" syndrome in 1967 in mule deer in a wildlife research facility in northern Colorado, USA, it was identified as a TSE in 1978 and has spread to free-ranging and captive populations in 23 US states and two Canadian provinces. CWD is typified by chronic weight loss leading to death. No relationship is known between CWD and any other TSE of animals or people.
Although reports in the popular press have been made of humans being affected by CWD, a study by the Centers for Disease Control and Prevention suggests, "[m]ore epidemiologic and laboratory studies are needed to monitor the possibility of such transmissions".
The epidemiological study further concluded, "[a]s a precaution, hunters should avoid eating deer and elk tissues known to harbor the CWD agent (e.g., brain, spinal cord, eyes, spleen, tonsils, lymph nodes) from areas where CWD has been identified".
Scrapie is a fatal, degenerative disease that affects the nervous systems of sheep and goats. It is one of several transmissible spongiform encephalopathies (TSEs), which are related to bovine spongiform encephalopathy (BSE or "mad cow disease") and chronic wasting disease of deer. Like other spongiform encephalopathies, scrapie is caused by a prion. Scrapie has been known since 1732, and does not appear to be transmissible to humans.
The name scrapie is derived from one of the clinical signs of the condition, wherein affected animals will compulsively scrape off their fleeces against rocks, trees, or fences. The disease apparently causes an itching sensation in the animals. Other clinical signs include excessive lip smacking, altered gaits, and convulsive collapse.
Scrapie is infectious and transmissible among conspecifics, so one of the most common ways to contain it (since it is incurable) is to quarantine and destroy those affected. However, scrapie tends to persist in flocks and can also arise apparently spontaneously in flocks that have not previously had cases of the disease. The mechanism of transmission between animals and other aspects of the biology of the disease are only poorly understood, and these are active areas of research. Recent studies suggest prions may be spread through urine and persist in the environment for decades.
Scrapie usually affects sheep around three to five years of age. The potential for transmission at birth and from contact with placental tissues is apparent. No evidence indicates scrapie is infectious to humans.
Kuru is a very rare, incurable neurodegenerative disorder that was formerly common among the Fore people of Papua New Guinea. Kuru is caused by the transmission of abnormally folded prion proteins, which leads to symptoms such as tremors, loss of coordination, and neurodegeneration.
The term kuru derives from the Fore word kuria or guria ("to shake"), due to the body tremors that are a classic symptom of the disease and kúru itself means "trembling". It is also known as the "laughing sickness" due to the pathologic bursts of laughter which are a symptom of the disease. It is now widely accepted that kuru was transmitted among members of the Fore tribe of Papua New Guinea via funerary cannibalism. Deceased family members were traditionally cooked and eaten, which was thought to help free the spirit of the dead. Females and children usually consumed the brain, the organ in which infectious prions were most concentrated, thus allowing for transmission of kuru. The disease was therefore more prevalent among women and children.
While the Fore people stopped eating human meat in the early 1960's, when it was first speculated to be transmitted via endocannibalism, the disease lingered due to kuru’s long incubation period of anywhere from 10 to over 50 years. The epidemic declined sharply after discarding cannibalism, from 200 deaths per year in 1957 to 1 or no deaths annually in 2005, with sources disagreeing on whether the last known kuru victim died in 2005 or 2009.
The degenerative tissue damage caused by human prion diseases (CJD, GSS, and kuru) is characterised by four features: spongiform change, neuronal loss, astrocytosis, and amyloid plaque formation. These features are shared with prion diseases in animals, and the recognition of these similarities prompted the first attempts to transmit a human prion disease (kuru) to a primate in 1966, followed by CJD in 1968 and GSS in 1981. These neuropathological features have formed the basis of the histological diagnosis of human prion diseases for many years, although it was recognized that these changes are enormously variable both from case to case and within the central nervous system in individual cases.
The clinical signs in humans vary, but commonly include personality changes, psychiatric problems such as depression, lack of coordination, and/or an unsteady gait (ataxia). Patients also may experience involuntary jerking movements called myoclonus, unusual sensations, insomnia, confusion, or memory problems. In the later stages of the disease, patients have severe mental impairment (dementia) and lose the ability to move or speak.
Early neuropathological reports on human prion diseases suffered from a confusion of nomenclature, in which the significance of the diagnostic feature of spongiform change was occasionally overlooked. The subsequent demonstration that human prion diseases were transmissible reinforced the importance of spongiform change as a diagnostic feature, reflected in the use of the term "spongiform encephalopathy" for this group of disorders.
Prions appear to be most infectious when in direct contact with affected tissues. For example, Creutzfeldt–Jakob disease has been transmitted to patients taking injections of growth hormone harvested from human pituitary glands, from cadaver dura allografts and from instruments used for brain surgery (Brown, 2000) (prions can survive the "autoclave" sterilization process used for most surgical instruments). It is also believed that dietary consumption of affected animals can cause prions to accumulate slowly, especially when cannibalism or similar practices allow the proteins to accumulate over more than one generation. An example is kuru, which reached epidemic proportions in the mid-20th century in the Fore people of Papua New Guinea, who used to consume their dead as a funerary ritual. Laws in developed countries now ban the use of rendered ruminant proteins in ruminant feed as a precaution against the spread of prion infection in cattle and other ruminants.
There exist evidence that prion diseases may be transmissible by the airborne route.
Note that not all encephalopathies are caused by prions, as in the cases of PML (caused by the JC virus), CADASIL (caused by abnormal NOTCH3 protein activity), and Krabbe disease (caused by a deficiency of the enzyme galactosylceramidase). Progressive Spongiform Leukoencephalopathy (PSL)—which is a spongiform encephalopathy—is also probably not caused by a prion, although the adulterant that causes it among heroin smokers has not yet been identified. This, combined with the highly variable nature of prion disease pathology, is why a prion disease cannot be diagnosed based solely on a patient's symptoms.
Feline spongiform encephalopathy is a disease that affects the brains of felines. It is caused by proteins called prions.
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of progressive, invariably fatal, conditions that affect the brain (encephalopathies) and nervous system of many animals, including humans. According to the most widespread hypothesis, they are transmitted by prions, though some other data suggest an involvement of a "Spiroplasma" infection. Mental and physical abilities deteriorate and myriad tiny holes appear in the cortex causing it to appear like a sponge (hence spongiform) when brain tissue obtained at autopsy is examined under a microscope. The disorders cause impairment of brain function, including memory changes, personality changes and problems with movement that worsen chronically.
Prion diseases of humans include Creutzfeldt–Jakob disease—which has four main forms, the sporadic (sCJD), the hereditary/familiar (fCJD), the iatrogenic (iCJD) and the variant form (vCJD)—Gerstmann–Sträussler–Scheinker syndrome, fatal familial insomnia, kuru, and the recently discovered variably protease-sensitive prionopathy. These conditions form a spectrum of diseases with overlapping signs and symptoms. TSEs in non-human mammals include scrapie in sheep, bovine spongiform encephalopathy (BSE)—popularly known as 'mad cow's disease'—in cattle and chronic wasting disease (CWD) in deer and elk. The variant form of Creutzfeldt–Jakob disease is caused by exposure to bovine spongiform encephalopathy prions.
Unlike other kinds of infectious disease, which are spread by agents with a DNA or RNA genome (such as virus or bacteria), the infectious agent in TSEs is believed to be a prion, thus being composed solely of protein material. Misshapen prion proteins carry the disease between individuals and cause deterioration of the brain. TSEs are unique diseases in that their aetiology may be genetic, sporadic, or infectious via ingestion of infected foodstuffs and via iatrogenic means (e.g., blood transfusion). Most TSEs are sporadic and occur in an animal with no prion protein mutation. Inherited TSE occurs in animals carrying a rare mutant prion allele, which expresses prion proteins that contort by themselves into the disease-causing conformation. Transmission occurs when healthy animals consume tainted tissues from others with the disease. In the 1980s and 1990s, bovine spongiform encephalopathy (BSE) spread in cattle in an epidemic fashion. This occurred because cattle were fed the processed remains of other cattle, a practice now banned in many countries. In turn, consumption (by humans) of bovine-derived foodstuff which contained prion-contaminated tissues resulted in an outbreak of the variant form of Creutzfeldt–Jakob disease in the 1990s and 2000s.
Prions cannot be transmitted through the air or through touching or most other forms of casual contact. However, they may be transmitted through contact with infected tissue, body fluids, or contaminated medical instruments. Normal sterilization procedures such as boiling or irradiating materials fail to render prions non-infective.
Exotic ungulate encephalopathy is a transmissible spongiform encephalopathy (TSE), or prion disease, identified in infected organs of zoo animals. This subgroup of the TSEs in captive animals was identified in zoo animals in Great Britain including species of greater kudu, nyala, gemsbok, the common eland, Arabian and Scimitar Oryx, an Ankole-Watusi cow, and an American bison. Studies indicate that transmission likely occurred via the consumption of feed supplemented with meat and bone meal, although some animals died after the British ban on ground offal in animal feed. All animals died during the 1990s, with the last death occurring in 1998.
A slow virus is a virus, or a viruslike agent, etiologically associated with a disease, having a long incubation period of months to years and then a gradual onset of symptoms which progress slowly but irreversibly and terminate in a severe compromised state or, more commonly, death.
A slow virus disease is a disease that, after an extended period of latency, follows a slow, progressive course spanning months to years, frequently involving the central nervous system and ultimately leading to death. Examples include the Visna-Maedi virus, in the genus Lentivirus (family Retroviridae), that causes encephalitis and chronic pneumonitis in sheep, and subacute sclerosing panencephalitis which is apparently caused by the measles virus, as well as Paget's Disease of Bone (Osteitis Deformans) which is associated with paramyxoviridae, especially RSV and Rubeola (Measles).
Feline spongiform encephalopathy (FSE) is a prion disease thought to be related or identical to Bovine spongiform encephalopathy (BSE).This disease is known to affect domestic and captive feline species. Lezmi S. et al. (2003), suggested that this infectious agent might be spread by both haematogenous and nervous pathways. Like BSE, this disease can take several years to develop. It is probable, but not proven, that the affected animals contract the disease by eating contaminated bovine meat.
The first symptom of CJD is usually rapidly progressive dementia, leading to memory loss, personality changes, and hallucinations. Myoclonus (jerky movements) typically occurs in 90% of cases, but may be absent at initial onset. Other frequently occurring features include anxiety, depression, paranoia, obsessive-compulsive symptoms, and psychosis. This is accompanied by physical problems such as speech impairment, balance and coordination dysfunction (ataxia), changes in gait, rigid posture, and seizures. In most patients, these symptoms are accompanied by involuntary movements and the appearance of an atypical, diagnostic electroencephalogram tracing. The duration of the disease varies greatly, but sporadic (non-inherited) CJD can be fatal within months or even weeks. Most victims die six months after initial symptoms appear, often of pneumonia due to impaired coughing reflexes. About 15% of patients survive for two or more years.
The symptoms of CJD are caused by the progressive death of the brain's nerve cells, which is associated with the build-up of abnormal prion protein molecules forming amyloids. When brain tissue from a CJD patient is examined under a microscope, many tiny holes can be seen where whole areas of nerve cells have died. The word "spongiform" in "transmissible spongiform encephalopathies" refers to the sponge-like appearance of the brain tissue.
Creutzfeldt–Jakob disease (CJD) is a universally fatal brain disorder. Early symptoms include memory problems, behavioral changes, poor coordination, and visual disturbances. Later dementia, involuntary movements, blindness, weakness, and coma occur. About 90% of people die within a year of diagnosis.
CJD is believed to be caused by a protein known as a prion. Infectious prions are misfolded proteins that can cause normally folded proteins to become misfolded. Most cases occur spontaneously, while about 7.5% of cases are inherited from a person's parents in an autosomal dominant manner. Exposure to brain or spinal tissue from an infected person may also result in spread. There is no evidence that it can spread between people via normal contact or blood transfusions. Diagnosis involves ruling out other potential causes. An electroencephalogram, spinal tap, or magnetic resonance imaging may support the diagnosis.
There is no specific treatment. Opioids may be used to help with pain, while clonazepam or sodium valproate may help with involuntary movements. CJD affects about one per million people per year. Onset is typically around 60 years of age. The condition was first described in 1920. It is classified as a type of transmissible spongiform encephalopathy. CJD is different from bovine spongiform encephalopathy (mad cow disease) and variant Creutzfeldt–Jakob disease (vCJD).
Variant Creutzfeldt–Jakob disease (vCJD) or new variant Creutzfeldt–Jakob disease (nvCJD) is a transmissible spongiform encephalopathy which was identified in 1996 by the National CJD Surveillance Unit in Edinburgh, Scotland. It is always fatal and is caused by prions, which are mis-folded proteins. Over 170 cases of vCJD have been recorded in the United Kingdom, and around 30 cases in the rest of the world. The fact that the epidemiology of the disease coincided with an epidemic of bovine spongiform encephalopathy led to the hypothesis that consumption of BSE-infected beef caused the disease. It is a different disease from Sporadic and Familial Creutzfeldt–Jakob disease, though it is believed to be caused by the same pathogenic agent, a mis-folded protein, known as a prion.
Despite the consumption of contaminated beef in the UK being reckoned to be quite high, vCJD has infected a comparatively small cohort of people. One explanation for this can be found in the genetics of patients with the disease. The human PRNP protein which is subverted in prion disease can occur with either methionine or valine at amino acid 129, without any apparent difference in normal function. Of the overall Caucasian population, about 40% have two methionine-containing alleles, 10% have two valine-containing alleles, and the other 50% are heterozygous at this position. Only a single vCJD patient tested was found to be heterozygous; most of those affected had two copies of the methionine-containing form. Additionally, for unknown reasons, those affected are generally under the age of 40. It is not yet known whether those unaffected are actually immune or only have a longer incubation period until symptoms appear.
This illness has a minimum incubation period of 7 months with a maximum of 12 months. This disease results in mortality of adult animals.
Clinical signs of TME include the characteristic behavioural changes such as confusion, loss of cleanliness, and aimless circling. An affected animal shows signs of weight loss, might develop matted fur, hindquarter ataxia, and its tail arched over its back. Seizures may very rarely occur. Near-death stages include the animal showing signs of drowsiness and unresponsiveness.
Currently, no tests are available to detect signs of this illness in live animals. However, veterinary pathologists can confirm this illness by microscopic examination of the brain tissue in animals suspected to have died of this disease, where they expect to detect areas of distinct sponge-like formations, or by the identification of the prion protein in these tissue samples.
Every infectious agent is different, but in general, slow viruses:
Additionally, the immune system seems to plays a limited role, or no role, in protection from these slow viruses. This may be in part because the host has acclimated to the virus, or more likely because the host must be immunocompromised in order for many of these slow virus infections to emerge, so the immune system is at a disadvantage from the start.
Transmissible mink encephalopathy (TME) is a rare sporadic disease that affects the central nervous system of ranch-raised mink. It is classified as a transmissible spongiform encephalopathy, believed to be caused by proteins called prions. This disease is only known to affect adult mink.
Symptoms start with slowly developing dysarthria (difficulty speaking) and cerebellar ataxia (unsteadiness) and then the progressive dementia becomes more evident. Loss of memory can be the first symptom of GSS. Extrapyramidal and pyramidal symptoms and signs may occur and the disease may mimic spinocerebellar ataxias in the beginning stages. Myoclonus (spasmodic muscle contraction) is less frequently seen than in Creutzfeldt–Jakob disease. Many patients also exhibit nystagmus (involuntary movement of the eyes), visual disturbances, and even blindness or deafness. The neuropathological findings of GSS include widespread deposition of amyloid plaques composed of abnormally folded prion protein.
Gerstmann–Sträussler–Scheinker syndrome (GSS) is a very rare, usually familial, fatal neurodegenerative disease that affects patients from 20 to 60 years in age. Though exclusively heritable, this extremely rare disease is classified with the transmissible spongiform encephalopathies (TSE) due to the causative role played by PRNP, the human prion protein.
Familial cases are associated with autosomal-dominant inheritance.
Gerstmann–Sträussler–Scheinker disease (GSS) is an extremely rare neurogenetic brain disorder. It is always inherited and is found in only a few families all over the world (according to NINDS). The trait is an autosomal-dominant trait caused by a gene mutation. It is also in a group of hereditary prion protein diseases or also known as TSEs. Many symptoms are associated with GSS, such as progressive ataxia, pyramidal signs, and even adult-onset dementia; they progress more as the disease progresses.
Covering sickness, or dourine (French, from the Arabic "darina", meaning mangy (said of a female camel), feminine of "darin", meaning dirty), is a disease of horses and other members of the family Equidae. The disease is caused by "Trypanosoma equiperdum", which belongs to an important genus of parasitic protozoa, and is the only member of the genus that is spread through sexual intercourse. The occurrence of dourine is notifiable in the European Union under legislation from the OIE. There currently is no vaccine and although clinical signs can be treated, there is no cure.
The hallmark of encephalopathy is an altered mental state. Characteristic of the altered mental state is impairment of the cognition, attention, orientation, sleep–wake cycle and consciousness. An altered state of consciousness may range from failure of selective attention to drowsiness. Hypervigilance may be present; with or without: congnitive deficits, headache, epileptic seizures, myoclonus (involuntary twitching of a muscle or group of muscles) or asterixis ("flapping tremor" of the hand when wrist is extended).
Depending on the type and severity of encephalopathy, common neurological symptoms are loss of cognitive function, subtle personality changes, inability to concentrate. Other neurological signs may include dysarthria, hypomimia, problems with movements (they can be clumsy or slow), ataxia, tremor. Another neurological signs may include involuntary grasping and sucking motions, nystagmus (rapid, involuntary eye movement), jactitation (restless picking at things characteristic of severe infection), and respiratory abnormalities such as Cheyne-Stokes respiration (cyclic waxing and waning of tidal volume), apneustic respirations and post-hypercapnic apnea. Focal neurological deficits are less common.
Encephalopathies exhibits both neurologic and psychopathologic symptoms.
Tauopathy belongs to a class of neurodegenerative diseases associated with the pathological aggregation of tau protein in neurofibrillary or gliofibrillary tangles in the human brain. Tangles are formed by hyperphosphorylation of a microtubule-associated protein known as tau, causing it to aggregate in an insoluble form. (These aggregations of hyperphosphorylated tau protein are also referred to as paired helical filaments). The precise mechanism of tangle formation is not completely understood, and it is still controversial as to whether tangles are a primary causative factor in the disease or play a more peripheral role. Primary tauopathies, i.e., conditions in which neurofibrillary tangles (NFT) are predominantly observed, include:
- Primary age-related tauopathy (PART)/Neurofibrillary tangle-predominant senile dementia, with NFTs similar to AD, but without plaques.
- Chronic traumatic encephalopathy, including dementia pugilistica
- Progressive supranuclear palsy
- Corticobasal degeneration
- Frontotemporal dementia and parkinsonism linked to chromosome 17
- Lytico-Bodig disease (Parkinson-dementia complex of Guam)
- Ganglioglioma and gangliocytoma
- Meningioangiomatosis
- Postencephalitic parkinsonism
- Subacute sclerosing panencephalitis
- As well as lead encephalopathy, tuberous sclerosis, Hallervorden-Spatz disease, and lipofuscinosis
Neurofibrillary tangles were first described by Alois Alzheimer in one of his patients suffering from Alzheimer's disease (AD), which is considered a secondary tauopathy. AD is also classified as an amyloidosis because of the presence of senile plaques.
The degree of NFT involvement in AD is defined by Braak stages. Braak stages I and II are used when NFT involvement is confined mainly to the transentorhinal region of the brain, stages III and IV when there's also involvement of limbic regions such as the hippocampus, and V and VI when there's extensive neocortical involvement. This should not be confused with the degree of senile plaque involvement, which progresses differently.
In both Pick's disease and corticobasal degeneration, tau proteins are deposited as inclusion bodies within swollen or "ballooned" neurons.
Argyrophilic grain disease (AGD), another type of dementia, is marked by an abundance of argyrophilic grains and coiled bodies upon microscopic examination of brain tissue. Some consider it to be a type of Alzheimer's disease. It may co-exist with other tauopathies such as progressive supranuclear palsy and corticobasal degeneration, and also Pick's disease.
Huntington's disease (HD): a neurodegenerative disease caused by a CAG tripled expansion in the Huntington gene is the most recently described tauopathy (Fernandez-Nogales et al. Nat Med 2014). JJ Lucas and co-workers demonstrate that, in brains with HD, tau levels are increased and the 4R/3R balance is altered. In addition, the Lucas study shows intranuclear insoluble deposits of tau; these "Lucas' rods" were also found in brains with Alzheimer's disease.
Tauopathies are often overlapped with synucleinopathies, possibly due to interaction between the synuclein and tau proteins.
The non-Alzheimer's tauopathies are sometimes grouped together as "Pick's complex" due to their association with frontotemporal dementia, or frontotemporal lobar degeneration.