Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A callosity is another name for callus, a piece of skin that has become thickened as a result of repeated contact and friction.
When occurring on an animal's buttocks, as with baboons, they are specifically called ischial callosities. Ischial relates to the ischium: it forms the lower and back part of the hip bone.
The pads enable the monkeys to sleep sitting upright on thin branches, beyond reach of predators, without falling.
The ischial callosities are one of the most distinctive pelvic features which separates Old World monkeys from New World monkeys.
Malum perforans (also known as neurotrophic ulcer and trophic ulcer) is a long-lasting, usually painless ulcer that penetrates deep into or through the skin, usually on the sole of the foot (in which case it may be called malum perforans pedis). It is often a complication in diabetes mellitus and other conditions affecting the nerves.
These ulcers have punched-out edge and slough in floor, resembling gummatous ulcer. Surrounding area might have loss of sensation.
Diffuse palmoplantar keratoderma is a type of palmoplantar keratoderma that is characterized by an even, thick, symmetric hyperkeratosis over the whole of the palm and sole, usually evident at birth or in the first few months of life. Restated, diffuse palmoplantar keratoderma is an autosomal dominant disorder in which hyperkeratosis is confined to the palms and soles. The two major types can have a similar clinical appearance:
- "Diffuse epidermolytic palmoplantar keratoderma" (also known as "Palmoplantar keratoderma cum degeneratione granulosa Vörner," "Vörner's epidermolytic palmoplantar keratoderma", and "Vörner keratoderma") is one of the most common patterns of palmoplantar keratoderma, an autosomal dominant condition that presents within the first few months of life, characterized by a well-demarcated, symmetric thickening of palms and soles, often with a "dirty" snakeskin appearance due to underlying epidermolysis.
- "Diffuse nonepidermolytic palmoplantar keratoderma" (also known as "Diffuse orthohyperkeratotic keratoderma," "Hereditary palmoplantar keratoderma," "Keratosis extremitatum progrediens," "Keratosis palmoplantaris diffusa circumscripta," "Tylosis," "Unna–Thost disease", and "Unna–Thost keratoderma") is inherited as an autosomal dominant condition and is present from infancy, characterized by a well-demarcated, symmetric, often "waxy" keratoderma involving the whole of the palms and soles.
Clinically, three distinct patterns of palmoplantar keratoderma may be identified: diffuse, focal, and punctate.
Many conditions affect the human integumentary system—the organ system covering the entire surface of the body and composed of skin, hair, nails, and related muscle and glands. The major function of this system is as a barrier against the external environment. The skin weighs an average of four kilograms, covers an area of two square meters, and is made of three distinct layers: the epidermis, dermis, and subcutaneous tissue. The two main types of human skin are: glabrous skin, the hairless skin on the palms and soles (also referred to as the "palmoplantar" surfaces), and hair-bearing skin. Within the latter type, the hairs occur in structures called pilosebaceous units, each with hair follicle, sebaceous gland, and associated arrector pili muscle. In the embryo, the epidermis, hair, and glands form from the ectoderm, which is chemically influenced by the underlying mesoderm that forms the dermis and subcutaneous tissues.
The epidermis is the most superficial layer of skin, a squamous epithelium with several strata: the stratum corneum, stratum lucidum, stratum granulosum, stratum spinosum, and stratum basale. Nourishment is provided to these layers by diffusion from the dermis, since the epidermis is without direct blood supply. The epidermis contains four cell types: keratinocytes, melanocytes, Langerhans cells, and Merkel cells. Of these, keratinocytes are the major component, constituting roughly 95 percent of the epidermis. This stratified squamous epithelium is maintained by cell division within the stratum basale, in which differentiating cells slowly displace outwards through the stratum spinosum to the stratum corneum, where cells are continually shed from the surface. In normal skin, the rate of production equals the rate of loss; about two weeks are needed for a cell to migrate from the basal cell layer to the top of the granular cell layer, and an additional two weeks to cross the stratum corneum.
The dermis is the layer of skin between the epidermis and subcutaneous tissue, and comprises two sections, the papillary dermis and the reticular dermis. The superficial papillary dermis with the overlying rete ridges of the epidermis, between which the two layers interact through the basement membrane zone. Structural components of the dermis are collagen, elastic fibers, and ground substance. Within these components are the pilosebaceous units, arrector pili muscles, and the eccrine and apocrine glands. The dermis contains two vascular networks that run parallel to the skin surface—one superficial and one deep plexus—which are connected by vertical communicating vessels. The function of blood vessels within the dermis is fourfold: to supply nutrition, to regulate temperature, to modulate inflammation, and to participate in wound healing.
The subcutaneous tissue is a layer of fat between the dermis and underlying fascia. This tissue may be further divided into two components, the actual fatty layer, or panniculus adiposus, and a deeper vestigial layer of muscle, the panniculus carnosus. The main cellular component of this tissue is the adipocyte, or fat cell. The structure of this tissue is composed of septal (i.e. linear strands) and lobular compartments, which differ in microscopic appearance. Functionally, the subcutaneous fat insulates the body, absorbs trauma, and serves as a reserve energy source.
Conditions of the human integumentary system constitute a broad spectrum of diseases, also known as dermatoses, as well as many nonpathologic states (like, in certain circumstances, melanonychia and racquet nails). While only a small number of skin diseases account for most visits to the physician, thousands of skin conditions have been described. Classification of these conditions often presents many nosological challenges, since underlying etiologies and pathogenetics are often not known. Therefore, most current textbooks present a classification based on location (for example, conditions of the mucous membrane), morphology (chronic blistering conditions), etiology (skin conditions resulting from physical factors), and so on. Clinically, the diagnosis of any particular skin condition is made by gathering pertinent information regarding the presenting skin lesion(s), including the location (such as arms, head, legs), symptoms (pruritus, pain), duration (acute or chronic), arrangement (solitary, generalized, annular, linear), morphology (macules, papules, vesicles), and color (red, blue, brown, black, white, yellow). Diagnosis of many conditions often also requires a skin biopsy which yields histologic information that can be correlated with the clinical presentation and any laboratory data.
Frequent, chronic contact of instruments to skin may make it callous by the thickening of stratum corneum. Use of 'thumb position' in cellists may cause callosity of left thumb. Garrod's pads are seen on the dorsal left second and third fingers over the proximal interphalangeal joints in violinists. Drummer's digit is the callosity seen on the lateral phalynx of the left finger. Callosities need treatment only when they are excessive or symptomatic.
The intense contact between a musical instrument and skin may exaggerate existing skin conditions or cause new skin skin conditions. Skin conditions like hyperhidrosis, lichen planus, psoriasis, eczema, and urticaria may be caused in instrumental musicians due to occupational exposure and stress. Allergic contact dermatitis and irritant contact dermatitis are the most common skin conditions seen in string musicians.
Ionizing radiation-induced cutaneous conditions result from exposure to ionizing radiation.
- Acute radiodermatitis
- Chronic radiation keratosis
- Chronic radiodermatitis
- Eosinophilic, polymorphic, and pruritic eruption associated with radiotherapy
- Fluoroscopy burn
- Radiation acne
- Radiation cancer
- Radiation dermatitis (radiodermatitis)
- Radiation recall reaction
- Radiation-induced erythema multiforme
- Radiation-induced hypertrophic scar
- Radiation-induced keloid
- Radiation-induced morphea