Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Generally associated with exposure to beryllium levels at or above 100 μg/m, it produces severe cough, sore nose and throat, weight loss, labored breathing, anorexia, and increased fatigue.
In addition to beryllium's toxicity when inhaled, when brought into contact with skin at relatively low doses, beryllium can cause local irritation and contact dermatitis, and contact with skin that has been scraped or cut may cause rashes or ulcers. Beryllium dust or powder can irritate the eyes.
The signs and symptoms are generally flu-like. They include fever, chills, nausea, headache, fatigue, muscle aches, joint pains, lack of appetite, shortness of breath, pneumonia, chest pain, change in blood pressure, and coughing. A sweet or metallic taste in the mouth may also be reported, along with a dry or irritated throat which may lead to hoarseness. Symptoms of a more severe metal toxicity may also include a burning sensation in the body, shock, no urine output, collapse, convulsions, shortness of breath, yellow eyes or yellow skin, rash, vomiting, watery or bloody diarrhea or low or high blood pressure, which require prompt medical attention. Flu-like symptoms normally disappear within 24 to 48 hours. Full recovery often requires one to three weeks.
Acute beryllium poisoning is acute chemical pneumonia resulting from the toxic effect of beryllium in its elemental form or in various chemical compounds, and is distinct from berylliosis (also called chronic beryllium disease). After occupational safety procedures were put into place following the realization that the metal caused berylliosis around 1950, acute beryllium poisoning became extremely rare.
Coal ash, also known as coal combustion residuals (CCRs), is the particulate residue that remains from burning coal. Depending on the chemical composition of the coal burned, this residue may contain toxic substances and pose a health risk to workers in coal-fired power plants.
Metal fume fever, also known as brass founders' ague, brass shakes, zinc shakes, galvie flu, metal dust fever, Welding Shivers, or Monday morning fever, is an illness primarily caused by exposure to chemicals such as zinc oxide (ZnO), aluminum oxide (AlO), or magnesium oxide (MgO) which are produced as byproducts in the fumes that result when certain metals are heated. Other common sources are fuming silver, gold, platinum, chromium (from stainless steel), nickel, arsenic, manganese, beryllium, cadmium, cobalt, lead, selenium, and zinc.
Welders are commonly exposed to the substances that cause metal fume fever from the base metal, plating, or filler. Brazing and soldering can also cause metal poisoning due to exposure to lead, zinc, copper, or cadmium. In extreme cases, cadmium (present in some older silver solder alloys) can cause loss of consciousness.
Cadmium is a naturally occurring toxic heavy metal with common exposure in industrial workplaces, plant soils, and from smoking. Due to its low permissible exposure to humans, overexposure may occur even in situations where trace quantities of cadmium are found. Cadmium is used extensively in electroplating, although the nature of the operation does not generally lead to overexposure. Cadmium is also found in some industrial paints and may represent a hazard when sprayed. Operations involving removal of cadmium paints by scraping or blasting may pose a significant hazard. Cadmium is also present in the manufacturing of some types of batteries. Exposures to cadmium are addressed in specific standards for the general industry, shipyard employment, construction industry, and the agricultural industry.
With single or prolonged exposure by inhalation the lungs may become sensitized to beryllium. Berylliosis has an insidious onset and runs an indolent course. Some people who are sensitized to beryllium may not have symptoms. Continued exposure causes the development of small inflammatory nodules, called granulomas. Of note, the authors of a 2006 study suggested that beryllium inhalation was not the only form of exposure and perhaps skin exposure was also a cause, as they found that a reduction in beryllium inhalation did not result in a reduction in CBD or beryllium sensitization.
Granulomas are seen in other chronic diseases, such as tuberculosis and sarcoidosis, and it can occasionally be hard to distinguish berylliosis from these disorders. However, granulomas of CBD will typically be non-caseating, i.e. not characterized by necrosis and therefore not exhibiting a cheese-like appearance grossly.
Ultimately, this process leads to restrictive lung disease (a decrease in diffusion capacity).
The earliest symptoms are typically cough and shortness of breath. Other symptoms include chest pain, joint aches, weight loss, and fever.
Rarely, one can get granulomas in other organs including the liver.
The onset of symptoms can range from weeks up to tens of years from the initial exposure. In some individuals, a single exposure to beryllium can cause berylliosis.
Berylliosis, or chronic beryllium disease (CBD), is a chronic allergic-type lung response and chronic lung disease caused by exposure to beryllium and its compounds, a form of beryllium poisoning. It is distinct from acute beryllium poisoning, which became rare following occupational exposure limits established around 1950. Berylliosis is an occupational lung disease.
The condition is incurable, but symptoms can be treated.
Classification of silicosis is made according to the disease's severity (including radiographic pattern), onset, and rapidity of progression. These include:
- Chronic simple silicosis: Usually resulting from long-term exposure (10 years or more) to relatively low concentrations of silica dust and usually appearing 10–30 years after first exposure. This is the most common type of silicosis. Patients with this type of silicosis, especially early on, may not have obvious signs or symptoms of disease, but abnormalities may be detected by x-ray. Chronic cough and exertional dyspnea (shortness of breath) are common findings. Radiographically, chronic simple silicosis reveals a profusion of small (<10 mm in diameter) opacities, typically rounded, and predominating in the upper lung zones.
- Accelerated silicosis: Silicosis that develops 5–10 years after first exposure to higher concentrations of silica dust. Symptoms and x-ray findings are similar to chronic simple silicosis, but occur earlier and tend to progress more rapidly. Patients with accelerated silicosis are at greater risk for complicated disease, including progressive massive fibrosis (PMF).
- Complicated silicosis: Silicosis can become "complicated" by the development of severe scarring (progressive massive fibrosis, or also known as conglomerate silicosis), where the small nodules gradually become confluent, reaching a size of 1 cm or greater. PMF is associated with more severe symptoms and respiratory impairment than simple disease. Silicosis can also be complicated by other lung disease, such as tuberculosis, non-tuberculous mycobacterial infection, and fungal infection, certain autoimmune diseases, and lung cancer. Complicated silicosis is more common with accelerated silicosis than with the chronic variety.
- Acute silicosis: Silicosis that develops a few weeks to 5 years after exposure to high concentrations of respirable silica dust. This is also known as silicoproteinosis. Symptoms of acute silicosis include more rapid onset of severe disabling shortness of breath, cough, weakness, and weight loss, often leading to death. The x-ray usually reveals a diffuse alveolar filling with air bronchograms, described as a ground-glass appearance, and similar to pneumonia, pulmonary edema, alveolar hemorrhage, and alveolar cell lung cancer.
Symptoms arise 4–12 hours after exposure to an organic dust, and generally last from one to five days. Common generalised symptoms include fever over 38 °C, chills, myalgia and malaise. The most frequent respiratory symptoms are dyspnea and a dry cough, while a wheeze may be present less commonly. Headache, rhinitis, conjunctivitis and keratitis can also be present, and skin irritation may occur in those handling grain.
Respiratory function may worsen to the point where hypoxia occurs, and damage to the airways may lead to non-cardiogenic pulmonary edema one to three days post exposure.
Laboratory investigations may show a raised white cell (and specifically neutrophil) count, while a chest X-ray is often normal or shows minimal interstitial infiltration.
Metal toxicity or metal poisoning is the toxic effect of certain metals in certain forms and doses on life. Some metals are toxic when they form poisonous soluble compounds. Certain metals have no biological role, i.e. are not essential minerals, or are toxic when in a certain form. In the case of lead, any measurable amount may have negative health effects. Often heavy metals are thought as synonymous, but lighter metals may also be toxic in certain circumstances, such as beryllium and lithium. Not all heavy metals are particularly toxic, and some are essential, such as iron. The definition may also include trace elements when in abnormally high doses may be toxic. An option for treatment of metal poisoning may be chelation therapy, which is a technique which involves the administration of chelation agents to remove metals from the body.
Toxic metals sometimes imitate the action of an essential element in the body, interfering with the metabolic process resulting in illness. Many metals, particularly heavy metals are toxic, but some heavy metals are essential, and some, such as bismuth, have a low toxicity. Most often the definition of toxic metals includes at least cadmium, manganese, lead, mercury and the radioactive metals. Metalloids (arsenic, polonium) may be included in the definition. Radioactive metals have both radiological toxicity and chemical toxicity. Metals in an oxidation state abnormal to the body may also become toxic: chromium(III) is an essential trace element, but chromium(VI) is a carcinogen.
Toxicity is a function of solubility. Insoluble compounds as well as the metallic forms often exhibit negligible toxicity. The toxicity of any metal depends on its ligands. In some cases, organometallic forms, such as methylmercury and tetraethyl lead, can be extremely toxic. In other cases, organometallic derivatives are less toxic such as the cobaltocenium cation.
Decontamination for toxic metals is different from organic toxins: because toxic metals are elements, they cannot be destroyed. Toxic metals may be made insoluble or collected, possibly by the aid of chelating agents, or through bioremediation. Alternatively, they can be diluted into a sufficiently large reservoir, such as the sea, because immediate toxicity is a function of concentration rather than amount.
Toxic metals can bioaccumulate in the body and in the food chain. Therefore, a common characteristic of toxic metals is the chronic nature of their toxicity. This is particularly notable with radioactive heavy metals such as radium, which imitates calcium to the point of being incorporated into human bone, although similar health implications are found in lead or mercury poisoning. The exceptions to this are barium and aluminium, which can be removed efficiently by the kidneys.
Lead poisoning can cause a variety of symptoms and signs which vary depending on the individual and the duration of lead exposure. Symptoms are nonspecific and may be subtle, and someone with elevated lead levels may have no symptoms. Symptoms usually develop over weeks to months as lead builds up in the body during a chronic exposure, but acute symptoms from brief, intense exposures also occur.
Symptoms from exposure to organic lead, which is probably more toxic than inorganic lead due to its lipid solubility, occur rapidly. Poisoning by organic lead compounds has symptoms predominantly in the central nervous system, such as insomnia, delirium, cognitive deficits, tremor, hallucinations, and convulsions.
Symptoms may be different in adults and children; the main symptoms in adults are headache, abdominal pain, memory loss, kidney failure, male reproductive problems, and weakness, pain, or tingling in the extremities.
Early symptoms of lead poisoning in adults are commonly nonspecific and include depression, loss of appetite, intermittent abdominal pain, nausea, diarrhea, constipation, and muscle pain. Other early signs in adults include malaise, fatigue, decreased libido, and problems with sleep. An unusual taste in the mouth and personality changes are also early signs.
In adults, symptoms can occur at levels above 40 μg/dL, but are more likely to occur only above 50–60 μg/dL. Symptoms begin to appear in children generally at around 60 μg/dL. However, the lead levels at which symptoms appear vary widely depending on unknown characteristics of each individual. At blood lead levels between 25 and 60 μg/dL, neuropsychiatric effects such as delayed reaction times, irritability, and difficulty concentrating, as well as slowed motor nerve conduction and headache can occur. Anemia may appear at blood lead levels higher than 50 μg/dL. In adults, abdominal colic, involving paroxysms of pain, may appear at blood lead levels greater than 80 μg/dL. Signs that occur in adults at blood lead levels exceeding 100 μg/dL include wrist drop and foot drop, and signs of encephalopathy (a condition characterized by brain swelling), such as those that accompany increased pressure within the skull, delirium, coma, seizures, and headache. In children, signs of encephalopathy such as bizarre behavior, discoordination, and apathy occur at lead levels exceeding 70 μg/dL. For both adults and children, it is rare to be asymptomatic if blood lead levels exceed 100 μg/dL.
A toxic heavy metal is any relatively dense metal or metalloid that is noted for its potential toxicity, especially in environmental contexts. The term has particular application to cadmium, mercury, lead and arsenic, all of which appear in the World Health Organisation's list of 10 chemicals of major public concern. Other examples include manganese, chromium, cobalt, nickel, copper, zinc, selenium, silver, antimony and thallium.
Heavy metals are found naturally in the earth. They become concentrated as a result of human caused activities and can enter plant, animal, and human tissues via inhalation, diet, and manual handling. Then, they can bind to and interfere with the functioning of vital cellular components. The toxic effects of arsenic, mercury, and lead were known to the ancients, but methodical studies of the toxicity of some heavy metals appear to date from only 1868. In humans, heavy metal poisoning is generally treated by the administration of chelating agents. Some elements otherwise regarded as toxic heavy metals are essential, in small quantities, for human health.
Argyria or argyrosis is a condition caused by excessive exposure to chemical compounds of the element silver, or to silver dust. The most dramatic symptom of argyria is that the skin turns purple or purple-grey. It may take the form of "generalized argyria" or "local argyria". Generalized argyria affects large areas over much of the visible surface of the body. Local argyria shows in limited regions of the body, such as patches of skin, parts of the mucous membrane or the conjunctiva.
The terms argyria and argyrosis have long been used interchangeably, with argyria being used more frequently. Argyrosis has been used particularly in referring to argyria of the conjunctiva, but the usage has never been consistent and cannot be relied on except where it has been explicitly specified. The term is from "argyros" silver.
Classically, "lead poisoning" or "lead intoxication" has been defined as exposure to high levels of lead typically associated with severe health effects. Poisoning is a pattern of symptoms that occur with toxic effects from mid to high levels of exposure; toxicity is a wider spectrum of effects, including subclinical ones (those that do not cause symptoms). However, professionals often use "lead poisoning" and "lead toxicity" interchangeably, and official sources do not always restrict the use of "lead poisoning" to refer only to symptomatic effects of lead.
The amount of lead in the blood and tissues, as well as the time course of exposure, determine toxicity.
Lead poisoning may be acute (from intense exposure of short duration) or chronic (from repeat low-level exposure over a prolonged period), but the latter is much more common.
Diagnosis and treatment of lead exposure are based on blood lead level (the amount of lead in the blood), measured in micrograms of lead per deciliter of blood (μg/dL). Urine lead levels may be used as well, though less commonly. In cases of chronic exposure lead often sequesters in the highest concentrations first in the bones, then in the kidneys. If a provider is performing a provocative excretion test, or "chelation challenge", a measurement obtained from urine rather than blood is likely to provide a more accurate representation of total lead burden to a skilled interpreter.
The US Centers for Disease Control and Prevention and the World Health Organization state that a blood lead level of 10 μg/dL or above is a cause for concern; however, lead may impair development and have harmful health effects even at lower levels, and there is no known safe exposure level. Authorities such as the American Academy of Pediatrics define lead poisoning as blood lead levels higher than 10 μg/dL.
Lead forms a variety of compounds and exists in the environment in various forms. Features of poisoning differ depending on whether the agent is an organic compound (one that contains carbon), or an inorganic one. Organic lead poisoning is now very rare, because countries across the world have phased out the use of organic lead compounds as gasoline additives, but such compounds are still used in industrial settings. Organic lead compounds, which cross the skin and respiratory tract easily, affect the central nervous system predominantly.
In animals and humans chronic intake of silver products commonly leads to gradual accumulation of silver compounds in various parts of the body. As in photography (where silver is useful because of its sensitivity to light), exposure of pale or colourless silver compounds to sunlight decomposes them to silver metal or silver sulfides. Commonly these products deposit as microscopic particles in the skin, in effect a dark pigment. This condition is known as argyria or argyrosis.
Chronic intake also may lead to silver pigments depositing in other organs exposed to light, particularly the eyes. In the conjunctiva this is not generally harmful, but it also may affect the lens, leading to serious effects.
Localised argyria often results from topical use of substances containing silver, such as some kinds of eye drops. Generalized argyria results from chronically swallowing or inhaling silver compounds, either for home medicines purposes, or as a result of working with silver or silver compounds.
While silver is potentially toxic to humans at high doses, the risk of serious harm from low doses, given over a short term, is slight. Treatment of external infections is considered safe; oral use of colloidal silver is safe for short term administration if the dose is low. Silver is used in some medical appliances because of its anti-microbial nature, which stems from the oligodynamic effect. Chronic ingestion or inhalation of silver preparations (especially colloidal silver) can lead to argyria in the skin and other organs. This is not life-threatening, but is considered by most to be cosmetically undesirable.
The reference dose, published by the United States Environmental Protection Agency in 1991, which represents the estimated daily exposure that is unlikely to incur an appreciable risk of deleterious effects during a lifetime, is 5 µg/(kg·d).
Argyria worsens and builds up as exposure to silver continues, and does not resolve once exposure stops.
Brown lung can ultimately result in narrowing of the airways, lung scarring and death from infection or respiratory failure.
Radon () is a radioactive, colorless, odorless, tasteless noble gas, occurring naturally as the decay product of radium. It is one of the densest substances that remains a gas under normal conditions, and is considered to be a health hazard due to its radioactivity. Its most stable isotope, Rn, has a half-life of 3.8 days. Due to its high radioactivity, it has been less well-studied by chemists, but a few compounds are known.
Radon is formed as part of the normal radioactive decay chain of uranium into Pb. Uranium has been present since the earth was formed and its most common isotope has a very long half-life (4.5 billion years), which is the time required for one-half of uranium to break down. Thus, uranium and radon, will continue to occur for millions of years at about the same concentrations as they do now.
Radon is responsible for the majority of the mean public exposure to ionizing radiation. It is often the single largest contributor to an individual's background radiation dose, and is the most variable from location to location. Radon gas from natural sources can accumulate in buildings, especially in confined areas such as attics, and basements. It can also be found in some spring waters and hot springs.
According to a 2003 report "EPA's Assessment of Risks from Radon in Homes" from the United States Environmental Protection Agency, epidemiological evidence shows a clear link between lung cancer and high concentrations of radon, with 21,000 radon-induced U.S. lung cancer deaths per year—second only to cigarette smoking. Thus in geographic areas where radon is present in heightened concentrations, radon is considered a significant indoor air contaminant.
All types of asbestos fibers are known to cause serious health hazards in humans. Amosite and crocidolite are considered the most hazardous asbestos fiber types; however, chrysotile asbestos has also produced tumors in animals and is a recognized cause of asbestosis and malignant mesothelioma in humans, and mesothelioma has been observed in people who were occupationally exposed to chrysotile, family members of the occupationally exposed, and residents who lived close to asbestos factories and mines.
During the 1980s and again in the 1990s it was suggested at times that the process of making asbestos cement could "neutralize" the asbestos, either via chemical processes or by causing cement to attach to the fibers and changing their physical size; subsequent studies showed that this was untrue, and that decades-old asbestos cement, when broken, releases asbestos fibers identical to those found in nature, with no detectable alteration.
Silicosis (also known as pneumonoultramicroscopicsilicovolcanoconiosis, previously miner's phthisis, grinder's asthma, potter's rot and other occupation-related names) is a form of occupational lung disease caused by inhalation of crystalline silica dust, and is marked by inflammation and scarring in the form of nodular lesions in the upper lobes of the lungs. It is a type of pneumoconiosis.
Silicosis (particularly the acute form) is characterized by shortness of breath, cough, fever, and cyanosis (bluish skin). It may often be misdiagnosed as pulmonary edema (fluid in the lungs), pneumonia, or tuberculosis.
Silicosis resulted in 46,000 deaths globally in 2013 down from 55,000 deaths in 1990.
The name "silicosis" (from the Latin "silex", or flint) was originally used in 1870 by Achille Visconti (1836–1911), prosector in the Ospedale Maggiore of Milan. The recognition of respiratory problems from breathing in dust dates to ancient Greeks and Romans. Agricola, in the mid-16th century, wrote about lung problems from dust inhalation in miners. In 1713, Bernardino Ramazzini noted asthmatic symptoms and sand-like substances in the lungs of stone cutters. With industrialization, as opposed to hand tools, came increased production of dust. The pneumatic hammer drill was introduced in 1897 and sandblasting was introduced in about 1904, both significantly contributing to the increased prevalence of silicosis.
Argyria or argyrosis is a condition caused by inappropriate exposure to chemical compounds of the element silver, or to silver dust. The most dramatic symptom of argyria is that the skin turns blue or bluish-grey. It may take the form of "generalized argyria" or "local argyria". Generalized argyria affects large areas over much of the visible surface of the body. Local argyria shows in limited regions of the body, such as patches of skin, parts of the mucous membrane or the conjunctiva.
Patient history should reveal exposure to cotton, flax, hemp, or jute dust. Diagnostic tests include a lung function test and a chest x ray or CT scan.
Measurable change in lung function before and after working shifts is key to diagnosis. Patients suffering from byssinosis show a significant drop in FEV1 over the course of work shift.
Chest radiographs show areas of opacity due to fibrosis of the pulmonary parenchyma.
Coal workers' pneumoconiosis (CWP), also known as black lung disease or black lung, is caused by long exposure to coal dust. It is common in coal miners and others who work with coal. It is similar to both silicosis from inhaling silica dust and to the long-term effects of tobacco smoking. Inhaled coal dust progressively builds up in the lungs and cannot be removed by the body; this leads to inflammation, fibrosis, and in worse cases, necrosis.
Coal workers' pneumoconiosis, severe state, develops after the initial, milder form of the disease known as anthracosis ("anthrac" — coal, carbon). This is often asymptomatic and is found to at least some extent in all urban dwellers due to air pollution. Prolonged exposure to large amounts of coal dust can result in more serious forms of the disease, "simple coal workers' pneumoconiosis" and "complicated coal workers' pneumoconiosis" (or progressive massive fibrosis, or PMF). More commonly, workers exposed to coal dust develop industrial bronchitis, clinically defined as chronic bronchitis (i.e. productive cough for 3 months per year for at least 2 years) associated with workplace dust exposure. The incidence of industrial bronchitis varies with age, job, exposure, and smoking. In nonsmokers (who are less prone to develop bronchitis than smokers), studies of coal miners have shown a 16% to 17% incidence of industrial bronchitis.
In 2013 CWP resulted in 25,000 deaths down from 29,000 deaths in 1990.
Toxic abortion is a medical phenomenon of spontaneous abortion, miscarriage, or stillbirth caused by toxins in the environment of the mother during pregnancy, especially as caused by toxic environmental pollutants, though sometimes reported as caused by naturally occurring plant toxins.
Mold health issues are potentially harmful effects of molds.
Molds (US usage; British English "moulds") are ubiquitous in the biosphere, and mold spores are a common component of household and workplace dust. The United States Centers for Disease Control and Prevention reported in its June 2006 report, 'Mold Prevention Strategies and Possible Health Effects in the Aftermath of Hurricanes and Major Floods,' that "excessive exposure to mold-contaminated materials can cause adverse health effects in susceptible persons regardless of the type of mold or the extent of contamination." When mold spores are present in abnormally high quantities, they can present especially hazardous health risks to humans after prolonged exposure, including allergic reactions or poisoning by mycotoxins, or causing fungal infection (mycosis).