Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The common symptoms in all reported cases of primrose syndrome include ossified pinnae, learning disabilities or mental retardation, hearing problems, movement disorders (ataxia, paralysis, and parkinsonism among others (likely due, in part, to calcification of the basal ganglia), a torus palatinus (a neoplasm on the mouth's hard palate), muscle atrophy, and distorted facial features. Other symptoms usually occur, different in each case, but it is unknown whether or not these symptoms are caused by the same disease.
Primrose syndrome is a rare, slowly progressive genetic disorder that can vary symptomatically between individual cases, but is generally characterised by ossification of the external ears, learning difficulties, and facial abnormalities. It was first described in 1982 in Scotland's Royal National Larbert Institution by Dr D.A.A. Primrose.
Primrose syndrome appears to occur spontaneously, regardless of family history. The cause is currently unknown and there are no known treatments.
The periods before and surrounding birth are typically normal in individuals with LNS. The most common presenting features are abnormally decreased muscle tone (hypotonia) and developmental delay, which are evident by three to six months of age. Affected individuals are late in sitting up, while most never crawl or walk. Lack of speech is also a very common trait associated with LNS.
Irritability is most often noticed along with the first signs of nervous system impairment. Within the first few years of life, extrapyramidal involvement causes abnormal involuntary muscle contractions such as loss of motor control (dystonia), writhing motions (choreoathetosis), and arching of the spine (opisthotonus). Signs of pyramidal system involvement, including spasticity, overactive reflexes (hyperreflexia) and extensor plantar reflexes, also occur. The resemblance to athetoid cerebral palsy is apparent in the neurologic aspects of LNS. As a result, most individuals are initially diagnosed as having cerebral palsy. The motor disability is so extensive that most individuals never walk, and become lifelong wheelchair users.
Persons affected are cognitively impaired and have behavioral disturbances that emerge between two and three years of age. The uncontrollable self-injury associated with LNS also usually begins at three years of age. The self-injury begins with biting of the lips and tongue; as the disease progresses, affected individuals frequently develop finger biting and head banging. The self-injury can increase during times of stress. Self-harm is a distinguishing characteristic of the disease and is apparent in 85% of affected males.
The majority of individuals are cognitively impaired, which is sometimes difficult to distinguish from other symptoms because of the behavioral disturbances and motor deficits associated with the syndrome. In many ways, the behaviors may be seen as a psychological extension of the compulsion to cause self-injury, and include rejecting desired treats or travel, repaying kindness with coldness or rage, failing to answer test questions correctly despite study and a desire to succeed, provoking anger from caregivers when affection is desired.
Compulsive behaviors also occur, including aggressiveness, vomiting, spitting, and coprolalia (involuntary swearing). The development of this type of behavior is sometimes seen within the first year, or in early childhood, but others may not develop it until later in life.
Usually the cerebellum and brain stem are formed normally, although in some cases the cerebellum may also be absent. An infant with hydranencephaly may appear normal at birth or may have some distortion of the skull and upper facial features due to fluid pressure inside the skull. The infant's head size and spontaneous reflexes such as sucking, swallowing, crying, and moving the arms and legs may all seem normal, depending on the severity of the condition. However, after a few weeks the infant sometimes becomes irritable and has increased muscle tone (hypertonia). After several months of life, seizures and hydrocephalus may develop, if they did not exist at birth. Other symptoms may include visual impairment, lack of growth, deafness, blindness, spastic quadriparesis (paralysis), and intellectual deficits.
Some infants may have additional abnormalities at birth including seizures, myoclonus (involuntary sudden, rapid jerks), limited thermoregulation abilities, and respiratory problems.
Still other infants display no obvious symptoms at birth, going many months without a confirmed diagnosis of hydranencephaly. In some cases a severe hydrocephalus, or other cephalic condition, is misdiagnosed.
Hydranencephaly or hydrancephaly is a condition in which the brain's cerebral hemispheres are absent to varying degrees and the remaining cranial cavity is filled with cerebrospinal fluid.
Hydranencephaly (or hydrancephaly) is a type of cephalic disorder.
These disorders are congenital conditions that derive from either damage to, or abnormal development of, the fetal nervous system in the earliest stages of development in utero. Cephalic is the medical term for “head” or “head end of body.” These conditions do not have any definitive identifiable cause factor; instead generally attributed to a variety of hereditary or genetic conditions, but also by environmental factors such as maternal infection, pharmaceutical intake, or even exposure to high levels of radiation.
This should not be confused with hydrocephalus, which is an accumulation of excess cerebrospinal fluid in the ventricles of the brain.
In hemihydranencephaly, only half of the cranial cavity is filled with fluid.
The symptoms of Leigh syndrome are classically described as beginning in infancy and leading to death within a span of several years; however, as more cases are recognized, it is apparent that symptoms can emerge at any age—including adolescence or adulthood—and patients can survive for many years following diagnosis. Symptoms are often first seen after a triggering event that taxes the body's energy production, such as an infection or surgery. The general course of Leigh syndrome is one of episodic developmental regression during times of metabolic stress. Some patients have long periods without disease progression while others develop progressive decline.
Infants with the syndrome have symptoms that include diarrhea, vomiting, and dysphagia (trouble swallowing or sucking), leading to a failure to thrive. Children with early Leigh disease also may appear irritable and cry much more than usual. Seizures are often seen. Excess lactate may be seen in the urine, cerebrospinal fluid, and blood of a person with Leigh syndrome.
As the disease progresses, the muscular system is debilitated throughout the body, as the brain cannot control the contraction of muscles. Hypotonia (low muscle tone and strength), dystonia (involuntary, sustained muscle contraction), and ataxia (lack of control over movement) are often seen in people with Leigh disease. The eyes are particularly affected; the muscles that control the eyes become weak, paralyzed, or uncontrollable in conditions called ophthalmoparesis (weakness or paralysis) and nystagmus (involuntary eye movements). Slow saccades are also sometimes seen. The heart and lungs can also fail as a result of Leigh disease. Hypertrophic cardiomyopathy (thickening of part of the heart muscle) is also sometimes found and can cause death; asymmetric septal hypertrophy has also been associated with Leigh syndrome. In children with Leigh-syndrome associated ventricular septal defects, caused by pyruvate dehydrogenase deficiency, high forehead and large ears are seen; facial abnormalities are not typical of Leigh syndrome.
However, respiratory failure is the most common cause of death in people with Leigh syndrome. Other neurological symptoms include peripheral neuropathy, loss of sensation in extremities caused by damage to the peripheral nervous system.
Hypertrichosis is seen in Leigh syndrome caused by mutations in the nuclear gene SURF1.
Leigh syndrome (also called Leigh disease and subacute necrotizing encephalomyelopathy) is an under-recognized inherited neurometabolic disorder that affects the central nervous system. It is named after Archibald Denis Leigh, a British neuropsychiatrist who first described the condition in 1951.
Segawa Syndrome (SS) also known as Dopamine-responsive dystonia (DRD), Segawa's disease, Segawa's dystonia and hereditary progressive dystonia with diurnal fluctuation, is a genetic movement disorder which usually manifests itself during early childhood at around ages 5–8 years (variable start age).
Characteristic symptoms are increased muscle tone (dystonia, such as clubfoot) and Parkinsonian features, typically absent in the morning or after rest but worsening during the day and with exertion. Children with SS are often misdiagnosed as having cerebral palsy. The disorder responds well to treatment with levodopa.
The disease typically starts in one limb, typically one leg. Progressive dystonia results in clubfoot and tiptoe walking. The symptoms can spread to all four limbs around age 18, after which progression slows and eventually symptoms reach a plateau. There can be regression in developmental milestones (both motor and mental skills) and failure to thrive in the absence of treatment.
In addition, SS is typically characterized by signs of parkinsonism that may be relatively subtle. Such signs may include slowness of movement (bradykinesia), tremors, stiffness and resistance to movement (rigidity), balance difficulties, and postural instability. Approximately 25 percent also have abnormally exaggerated reflex responses (hyperreflexia), particularly in the legs. These symptoms can result in a presentation that is similar in appearance to that of Parkinson's Disease.
Many patients experience improvement with sleep, are relatively free of symptoms in the morning, and develop increasingly severe symptoms as the day progresses (i.e., diurnal fluctuation). Accordingly, this disorder has sometimes been referred to as "progressive hereditary dystonia with diurnal fluctuations." Yet some SS patients do not experience such diurnal fluctuations, causing many researchers to prefer other disease terms.
- Other symptoms - footwear
- excessive wear at toes, but little wear on heels, thus replacement of shoes every college term/semester.
- Other symptoms - handwriting
- near normal handwriting at infants/kindergarten (ages 3–5 school) years.
- poor handwriting at pre-teens (ages 8–11 school) years.
- very poor (worse) handwriting during teen (qv GCSE/A level-public exams) years.
- bad handwriting (worsening) during post-teen (qv university exams) years.
- very bad handwriting (still worsening) during adult (qv post-graduate exams) years.
- worsening pattern of sloppy handwriting best observed by school teachers via termly reports.
- child sufferer displays unhappy childhood facial expressions (depression.?)
About half the people with Wilson's disease have neurological or psychiatric symptoms. Most initially have mild cognitive deterioration and clumsiness, as well as changes in behavior. Specific neurological symptoms usually then follow, often in the form of parkinsonism (cogwheel rigidity, bradykinesia or slowed movements and a lack of balance are the most common parkinsonian features) with or without a typical hand tremor, masked facial expressions, slurred speech, ataxia (lack of coordination) or dystonia (twisting and repetitive movements of part of the body). Seizures and migraine appear to be more common in Wilson's disease. A characteristic tremor described as "wing-beating tremor" is encountered in many people with Wilson's; this is absent at rest but can be provoked by extending the arms.
Cognition can also be affected in Wilson's disease. This comes in two, not mutually exclusive, categories: frontal lobe disorder (may present as impulsivity, impaired judgement, promiscuity, apathy and executive dysfunction with poor planning and decision making) and subcortical dementia (may present as slow thinking, memory loss and executive dysfunction, without signs of aphasia, apraxia or agnosia). It is suggested that these cognitive involvements are related and closely linked to psychiatric manifestations of the disease.
Psychiatric problems due to Wilson's disease may include behavioral changes, depression, anxiety disorders, and psychosis. Psychiatric symptoms are commonly seen in conjunction with neurological symptoms and are rarely manifested on their own. These symptoms are often poorly defined and can sometimes be attributed to other causes. Because of this, diagnosis of Wilson's disease is rarely made when only psychiatric symptoms are present.
Symptoms depend on the type of HSP inherited. The main feature of the disease is progressive spasticity in the lower limbs due to pyramidal tract dysfunction. This also results in brisk reflexes, extensor plantar reflexes, muscle weakness, and variable bladder disturbances. Furthermore, among the core symptoms of HSP are also included abnormal gait and difficulty in walking, decreased vibratory sense at the ankles, and paresthesia.
Initial symptoms are typically difficulty with balance, stubbing the toe or stumbling. Symptoms of HSP may begin at any age, from infancy to older than 60 years. If symptoms begin during the teenage years or later, then spastic gait disturbance usually progresses over many years. Canes, walkers, and wheelchairs may eventually be required, although some people never require assistance devices.
More specifically, patients with the autosomal dominant pure form of HSP reveal normal facial and extraocular movement. Although jaw jerk may be brisk in older subjects, there is no speech disturbance or difficulty of swallowing. Upper extremity muscle tone and strength are normal. In the lower extremities, muscle tone is increased at the hamstrings, quadriceps and ankles. Weakness is most notable at the iliopsoas, tibialis anterior, and to a lesser extent, hamstring muscles.
In the complex form of the disorder, additional symptoms are present. These include: peripheral neuropathy, amyotrophy, ataxia, mental retardation, ichthyosis, epilepsy, optic neuropathy, dementia, deafness, or problems with speech, swallowing or breathing.
Anita Harding classified the HSP in a pure and complicated form. Pure HSP presents with spasticity in the lower limbs, associated with neurogenic bladder disturbance as well as lack of vibration sensitivity (pallhypesthesia). On the other hand, HSP is classified as complex when lower limb spasticity is combined with any additional neurological symptom.
This classification is subjective and patients with complex HSPs are sometimes diagnosed as having cerebellar ataxia with spasticity, mental retardation (with spasticity), or leukodystrophy. Some of the genes listed below have been described in other diseases than HSP before. Therefore, some key genes overlap with other disease groups.
Medical conditions have been linked with copper accumulation in Wilson's disease:
- Eyes: Kayser–Fleischer rings (KF rings), a pathognomonic sign, may be visible in the cornea of the eyes, either directly or on slit lamp examination as deposits of copper in a ring around the cornea. They are due to copper deposition in Descemet's membrane. They do not occur in all people with Wilson's disease. Wilson's disease is also associated with sunflower cataracts exhibited by brown or green pigmentation of the anterior and posterior lens capsule. Neither cause significant visual loss. KF rings occur in approximately 66% of diagnosed cases (more often in those with neurological symptoms rather than with liver problems).
- Kidneys: renal tubular acidosis (Type 2), a disorder of bicarbonate handling by the proximal tubules leads to nephrocalcinosis (calcium accumulation in the kidneys), a weakening of bones (due to calcium and phosphate loss), and occasionally aminoaciduria (loss of essential amino acids needed for protein synthesis).
- Heart: cardiomyopathy (weakness of the heart muscle) is a rare but recognized problem in Wilson's disease; it may lead to heart failure (fluid accumulation due to decreased pump function) and cardiac arrhythmias (episodes of irregular and/or abnormally fast or slow heart beat).
- Hormones: hypoparathyroidism (failure of the parathyroid glands leading to low calcium levels), infertility, and habitual abortion.
In the past, HSP has been classified as early onset beginning in early childhood or later onset in adulthood. The age of onsets has two points of maximum at age 2 and around age 40. New findings propose that an earlier onset leads to a longer disease duration without loss of ambulation or the need for the use of a wheelchair. This was also described earlier, that later onset forms evolve more rapidly.
Ballismus or ballism (called hemiballismus or hemiballism in its unilateral form) is a very rare movement disorder. It is a type of chorea caused in most cases by a decrease in activity of the subthalamic nucleus of the basal ganglia, resulting in the appearance of flailing, ballistic, undesired movements of the limbs. It can also appear rarely due to certain metabolic abnormalities. It is a rare movement disorder, being 500 times rarer than Parkinson's disease. Hemiballismus can cause significant disability. Symptoms can decrease during sleep.
The initial symptoms in two-thirds of cases are loss of balance, lunging forward when mobilizing, fast walking, bumping into objects or people, and falls.
Other common early symptoms are changes in personality, general slowing of movement, and visual symptoms.
Later symptoms and signs are dementia (typically including loss of inhibition and ability to organize information), slurring of speech, difficulty swallowing, and difficulty moving the eyes, particularly in the vertical direction. The latter accounts for some of the falls experienced by these patients as they are unable to look up or down.
Some of the other signs are poor eyelid function, contracture of the facial muscles, a backward tilt of the head with stiffening of the , sleep disruption, urinary incontinence and constipation.
The visual symptoms are of particular importance in the diagnosis of this disorder. Patients typically complain of difficulty reading due to the inability to look down well. Notably, the ophthalmoparesis experienced by these patients mainly concerns voluntary eye movement and the inability to make vertical saccades, which is often worse with downward saccades. Patients tend to have difficulty looking down (a downgaze ) followed by the addition of an upgaze palsy. This vertical gaze paresis will correct when the examiner passively rolls the patient's head up and down as part of a test for the oculocephalic reflex. Involuntary eye movement, as elicited by Bell's phenomenon, for instance, may be closer to normal. On close inspection, eye movements called "square-wave jerks" may be visible when the patient fixes at distance. These are fine movements, that can be mistaken for nystagmus, except that they are saccadic in nature, with no smooth phase. Difficulties with convergence (convergence insufficiency), where the eyes come closer together while focusing on something near, like the pages of a book, is typical. Because the eyes have trouble coming together to focus at short distances, the patient may complain of diplopia (double vision) when reading.
Cardinal manifestations:
- Supranuclear ophthalmoplegia
- Neck dystonia
- Parkinsonism
- Pseudobulbar palsy
- Behavioral and cognitive impairment
- Imbalance and walking difficulty
- Frequent falls
Clinical manifestations of intraparenchymal hemorrhage are determined by the size and location of hemorrhage, but may include the following:
- Hypertension, fever, or cardiac arrhythmias
- Nuchal rigidity
- Subhyaloid retinal hemorrhages
- Altered level of consciousness
- Anisocoria, Nystagmus
- Focal neurological deficits
- Putamen - Contralateral hemiparesis, contralateral sensory loss, contralateral conjugate gaze paresis, homonymous hemianopsia, aphasia, neglect, or apraxia
- Thalamus - Contralateral sensory loss, contralateral hemiparesis, gaze paresis, homonymous hemianopia, miosis, aphasia, or confusion
- Lobar - Contralateral hemiparesis or sensory loss, contralateral conjugate gaze paresis, homonymous hemianopia, abulia, aphasia, neglect, or apraxia
- Caudate nucleus - Contralateral hemiparesis, contralateral conjugate gaze paresis, or confusion
- Brain stem - Tetraparesis, facial weakness, decreased level of consciousness, gaze paresis, ocular bobbing, miosis, or autonomic instability
- Cerebellum - Ataxia, usually beginning in the trunk, ipsilateral facial weakness, ipsilateral sensory loss, gaze paresis, skew deviation, miosis, or decreased level of consciousness
"Ballism" was defined by Meyers in 1968 as "Repetitive, but constantly varying, large amplitude involuntary movements of the proximal parts of the limbs. This activity is almost ceaseless and movements are often complex and combined". Hemiballismus is usually characterized by involuntary flinging motions of the extremities. The movements are often violent and have wide amplitudes of motion. They are continuous and random and can involve proximal or distal muscles on one side of the body. Some cases even include the facial muscles. It is common for arms and legs to move together. The more a patient is active, the more the movements increase. With relaxation comes a decrease in movements. Physicians can measure the severity of the disorder by having the patient perform a series of basic, predetermined tasks and counting the hemiballistic movements during a set time session. The physicians then rate the patient on a severity scale. This scale gives scientists and clinicians a way to compare patients and determine the range of the disorder.
The name "hemiballismus" literally means "half ballistic", referring to the violent, flailing movements observed on one side of the body.
Progressive supranuclear palsy (PSP; or the Steele–Richardson–Olszewski syndrome, after the doctors who described it in 1963) is a degenerative disease involving the gradual deterioration and death of specific volumes of the brain.
Males and females are affected approximately equally and there is no racial, geographical or occupational predilection. Approximately six people per 100,000 population have PSP.
It has been described as a tauopathy.
In younger patients, vascular malformations, specifically AVMs and cavernous angiomas are more common causes for hemorrhage. In addition, venous malformations are associated with hemorrhage.
In the elderly population, amyloid angiopathy is associated with cerebral infarcts as well as hemorrhage in superficial locations, rather than deep white matter or basal ganglia. These are usually described as "lobar". These bleedings are not associated with systemic amyloidosis.
Hemorrhagic neoplasms are more complex, heterogeneous bleeds often with associated edema. These hemorrhages are related to tumor necrosis, vascular invasion and neovascularity. Glioblastomas are the most common primary malignancies to hemorrhage while thyroid, renal cell carcinoma, melanoma, and lung cancer are the most common causes of hemorrhage from metastatic disease.
Other causes of intraparenchymal hemorrhage include hemorrhagic transformation of infarction which is usually in a classic vascular distribution and is seen in approximately 24 to 48 hours following the ischemic event. This hemorrhage rarely extends into the ventricular system.
Tics are movements or sounds "that occur intermittently and unpredictably out of a background of normal motor activity", having the appearance of "normal behaviors gone wrong". The tics associated with Tourette's change in number, frequency, severity and anatomical location. Waxing and waning—the ongoing increase and decrease in severity and frequency of tics—occurs differently in each individual. Tics may also occur in "bouts of bouts", which vary for each person.
Coprolalia (the spontaneous utterance of socially objectionable or taboo words or phrases) is the most publicized symptom of Tourette's, but it is not required for a diagnosis of Tourette's and only about 10% of Tourette's patients exhibit it. Echolalia (repeating the words of others) and palilalia (repeating one's own words) occur in a minority of cases, while the most common initial motor and vocal tics are, respectively, eye blinking and throat clearing.
In contrast to the abnormal movements of other movement disorders (for example, choreas, dystonias, myoclonus, and dyskinesias), the tics of Tourette's are temporarily suppressible, nonrhythmic, and often preceded by an unwanted premonitory urge. Immediately preceding tic onset, most individuals with Tourette's are aware of an urge, similar to the need to sneeze or scratch an itch. Individuals describe the need to tic as a buildup of tension, pressure, or energy which they consciously choose to release, as if they "had to do it" to relieve the sensation or until it feels "just right". Examples of the premonitory urge are the feeling of having something in one's throat, or a localized discomfort in the shoulders, leading to the need to clear one's throat or shrug the shoulders. The actual tic may be felt as relieving this tension or sensation, similar to scratching an itch. Another example is blinking to relieve an uncomfortable sensation in the eye. These urges and sensations, preceding the expression of the movement or vocalization as a tic, are referred to as "premonitory sensory phenomena" or premonitory urges. Because of the urges that precede them, tics are described as semi-voluntary or ""unvoluntary"", rather than specifically "involuntary"; they may be experienced as a "voluntary", suppressible response to the unwanted premonitory urge. Published descriptions of the tics of Tourette's identify sensory phenomena as the core symptom of the syndrome, even though they are not included in the diagnostic criteria.
While individuals with tics are sometimes able to suppress their tics for limited periods of time, doing so often results in tension or mental exhaustion. People with Tourette's may seek a secluded spot to release their symptoms, or there may be a marked increase in tics after a period of suppression at school or at work. Some people with Tourette's may not be aware of the premonitory urge. Children may be less aware of the premonitory urge associated with tics than are adults, but their awareness tends to increase with maturity. They may have tics for several years before becoming aware of premonitory urges. Children may suppress tics while in the doctor's office, so they may need to be observed while they are not aware they are being watched. The ability to suppress tics varies among individuals, and may be more developed in adults than children.
Although there is no such thing as a "typical" case of Tourette syndrome, the condition follows a fairly reliable course in terms of the age of onset and the history of the severity of symptoms. Tics may appear up to the age of eighteen, but the most typical age of onset is from five to seven. A 1998 study published by Leckman and colleagues from the Yale Child Study Center showed that the ages of highest tic severity are eight to twelve (average ten), with tics steadily declining for most patients as they pass through adolescence. The most common, first-presenting tics are eye blinking, facial movements, sniffing and throat clearing. Initial tics present most frequently in midline body regions where there are many muscles, usually the head, neck and facial region. This can be contrasted with the stereotyped movements of other disorders (such as stims and stereotypies of the autism spectrum disorders), which typically have an earlier age of onset, are more symmetrical, rhythmical and bilateral, and involve the extremities (e.g., flapping the hands). Tics that appear early in the course of the condition are frequently confused with other conditions, such as allergies, asthma, and vision problems: pediatricians, allergists and ophthalmologists are typically the first to see a child with tics.
Most cases of Tourette's in older individuals are mild and almost unrecognizable. When symptoms are severe enough to warrant referral to clinics, obsessive–compulsive disorder (OCD) and attention-deficit hyperactivity disorder (ADHD) are often associated with Tourette's. In children with tics, the additional presence of ADHD is associated with functional impairment, disruptive behavior, and tic severity. Compulsions resembling tics are present in some individuals with OCD; "tic-related OCD" is hypothesized to be a subgroup of OCD, distinguished from non-tic related OCD by the type and nature of obsessions and compulsions. Not all persons with Tourette's have ADHD or OCD or other comorbid conditions, although in clinical populations, a high percentage of patients presenting for care do have ADHD. One author reports that a ten-year overview of patient records revealed about 40% of patients with Tourette's have "TS-only" or "pure TS", referring to Tourette syndrome in the absence of ADHD, OCD and other disorders. Another author reports that 57% of 656 patients presenting with tic disorders had uncomplicated tics, while 43% had tics plus comorbid conditions. People with "full-blown Tourette's" have significant comorbid conditions in addition to tics.
Chorea can also be a manifestation of drug toxicity (for example, anticonvulsants, antiparkinson agents, neuroleptics, steroids, and estrogen), or a result of an infectious disease such as meningovascular syphilis, Lyme disease, viral encephalitis, and many others.
Pain, especially headache, is a common complication following a TBI. Being unconscious and lying still for long periods can cause blood clots to form (deep venous thrombosis), which can cause pulmonary embolism. Other serious complications for patients who are unconscious, in a coma, or in a vegetative state include pressure sores, pneumonia or other infections, and progressive multiple organ failure.
The risk of post-traumatic seizures increases with severity of trauma (image at right) and is particularly elevated with certain types of brain trauma such as cerebral contusions or hematomas. As many as 50% of people with penetrating head injuries will develop seizures. People with early seizures, those occurring within a week of injury, have an increased risk of post-traumatic epilepsy (recurrent seizures occurring more than a week after the initial trauma) though seizures can appear a decade or more after the initial injury and the common seizure type may also change over time. Generally, medical professionals use anticonvulsant medications to treat seizures in TBI patients within the first week of injury only and after that only if the seizures persist.
Neurostorms may occur after a severe TBI. The lower the Glasgow Coma Score (GCS), the higher the chance of Neurostorming. Neurostorms occur when the patient's Autonomic Nervous System (ANS), Central Nervous System (CNS), Sympathetic Nervous System (SNS), and ParaSympathetic Nervous System (PSNS) become severely compromised https://www.brainline.org/story/neurostorm-century-part-1-3-medical-terminology . This in turn can create the following potential life-threatening symptoms: increased IntraCranial Pressure (ICP), tachycardia, tremors, seizures, fevers, increased blood pressure, increased Cerebral Spinal Fluid (CSF), and diaphoresis https://www.brainline.org/story/neurostorm-century-part-1-3-medical-terminology. A variety of medication may be used to help decrease or control Neurostorm episodes https://www.brainline.org/story/neurostorm-century-part-3-3-new-way-life.
Parkinson's disease and other motor problems as a result of TBI are rare but can occur. Parkinson's disease, a chronic and progressive disorder, may develop years after TBI as a result of damage to the basal ganglia. Other movement disorders that may develop after TBI include tremor, ataxia (uncoordinated muscle movements), and myoclonus (shock-like contractions of muscles).
Skull fractures can tear the meninges, the membranes that cover the brain, leading to leaks of cerebrospinal fluid (CSF). A tear between the dura and the arachnoid membranes, called a CSF fistula, can cause CSF to leak out of the subarachnoid space into the subdural space; this is called a subdural hygroma. CSF can also leak from the nose and the ear. These tears can also allow bacteria into the cavity, potentially causing infections such as meningitis. Pneumocephalus occurs when air enters the intracranial cavity and becomes trapped in the subarachnoid space. Infections within the intracranial cavity are a dangerous complication of TBI. They may occur outside of the dura mater, below the dura, below the arachnoid (meningitis), or within the brain itself (abscess). Most of these injuries develop within a few weeks of the initial trauma and result from skull fractures or penetrating injuries. Standard treatment involves antibiotics and sometimes surgery to remove the infected tissue.
Injuries to the base of the skull can damage nerves that emerge directly from the brain (cranial nerves). Cranial nerve damage may result in:
- Paralysis of facial muscles
- Damage to the nerves responsible for eye movements, which can cause double vision
- Damage to the nerves that provide sense of smell
- Loss of vision
- Loss of facial sensation
- Swallowing problems
Hydrocephalus, post-traumatic ventricular enlargement, occurs when CSF accumulates in the brain, resulting in dilation of the cerebral ventricles and an increase in ICP. This condition can develop during the acute stage of TBI or may not appear until later. Generally it occurs within the first year of the injury and is characterized by worsening neurological outcome, impaired consciousness, behavioral changes, ataxia (lack of coordination or balance), incontinence, or signs of elevated ICP.
Any damage to the head or brain usually results in some damage to the vascular system, which provides blood to the cells of the brain. The body can repair small blood vessels, but damage to larger ones can result in serious complications. Damage to one of the major arteries leading to the brain can cause a stroke, either through bleeding from the artery or through the formation of a blood clot at the site of injury, blocking blood flow to the brain. Blood clots also can develop in other parts of the head. Other types of vascular complications include vasospasm, in which blood vessels constrict and restrict blood flow, and the formation of aneurysms, in which the side of a blood vessel weakens and balloons out.
Fluid and hormonal imbalances can also complicate treatment. Hormonal problems can result from dysfunction of the pituitary, the thyroid, and other glands throughout the body. Two common hormonal complications of TBI are syndrome of inappropriate secretion of antidiuretic hormone and hypothyroidism.
Another common problem is spasticity. In this situation, certain muscles of the body are tight or hypertonic because they cannot fully relax.
The symptoms of organophosphate poisoning include muscle weakness, fatigue, muscle cramps, fasciculation, and paralysis. Other symptoms include hypertension, and hypoglycemia.
Overstimulation of nicotinic acetylcholine receptors in the central nervous system, due to accumulation of ACh, results in anxiety, headache, convulsions, ataxia, depression of respiration and circulation, tremor, general weakness, and potentially coma. When there is expression of muscarinic overstimulation due to excess acetylcholine at muscarinic acetylcholine receptors symptoms of visual disturbances, tightness in chest, wheezing due to bronchoconstriction, increased bronchial secretions, increased salivation, lacrimation, sweating, peristalsis, and urination can occur.
The effects of organophosphate poisoning on muscarinic receptors are recalled using the mnemonic SLUDGEM (salivation, lacrimation, urination, defecation, gastrointestinal motility, emesis, miosis) An additional mnemonic is MUDDLES: miosis, urination, diarrhea, diaphoresis, lacrimation, excitation, and salivation.
The onset and severity of symptoms, whether acute or chronic, depends upon the specific chemical, the route of exposure (skin, lungs, or GI tract), the dose, and the individuals ability to degrade the compound, which the PON1 enzyme level will affect.
Tics are sudden, repetitive, nonrhythmic movements (motor tics) and utterances (phonic tics) that involve discrete muscle groups. Motor tics are movement-based tics, while phonic tics are involuntary sounds produced by moving air through the nose, mouth, or throat.
Tourette's was classified by the fourth version of the "Diagnostic and Statistical Manual of Mental Disorders" (DSM-IV-TR) as one of several tic disorders "usually first diagnosed in infancy, childhood, or adolescence" according to type (motor or phonic tics) and duration (transient or chronic). Transient tic disorders consisted of multiple motor tics, phonic tics or both, with a duration between four weeks and twelve months. Chronic tic disorder was either single or multiple, motor or phonic tics (but not both), which were present for more than a year. Tourette's is diagnosed when multiple motor tics, and at least one phonic tic, are present for more than a year. The fifth version of the DSM (DSM-5), published in May 2013, reclassified Tourette's and tic disorders as motor disorders listed in the neurodevelopmental disorder category, and replaced transient tic disorder with provisional tic disorder, but made few other significant changes.
Tic disorders are defined only slightly differently by the World Health Organization International Statistical Classification of Diseases and Related Health Problems, ICD-10; code F95.2 is for combined vocal and multiple motor tic disorder [de la Tourette].
Although Tourette's is the more severe expression of the spectrum of tic disorders, most cases are mild. The severity of symptoms varies widely among people with Tourette's, and mild cases may be undetected.