Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Various degrees of intensity and locations of epilepsy are associated with malformations of cortical development. Researchers suggest that approximately 40% of children diagnosed with drug-resistant epilepsy have some degree of cortical malformation.
Lissencephaly (to which pachygyria is most closely linked) is associated with severe mental retardation, epilepsy, and motor disability. Two characteristics of lissencephaly include its absence of convolutions (agyria) and decreased presence of convolutions (pachygyria). The types of seizures associated with lissencephaly include:
- persisting spasms
- focal seizures
- tonic seizures
- atypical seizures
- atonic seizures
Other possible symptoms of lissencephaly include telecanthus, estropia, hypertelorism, varying levels of mental retardation, cerebellar hypoplasia, corpus callosum aplasia, and decreased muscle tone and tendon reflexes. Over 90% of children affected with lissencephaly have seizures.
Patients with subcortical band heterotopia (another disorder associated with pachygyria) typically have milder symptoms and their cognitive function is closely linked to the thickness of the subcortical band and the degree of pachygyria present.
Symptoms vary according to the abnormality, but often feature poor muscle tone and motor function, seizures, developmental delays, mental retardation, failure to grow and thrive, difficulties with feeding, swelling in the extremities, and a smaller than normal head. Most infants with an NMD appear normal, but some disorders have characteristic facial or skull features that can be recognized by a neurologist.
BFPP is a cobblestone-like cortical malformation of the brain. Disruptions of cerebral cortical development due to abnormal neuronal migration and positioning usually lead to cortical disorders, which includes cobblestone lissencephaly. Cobblestone lissencephaly is typically seen in three different human congenital muscular dystrophy syndromes: Fukuyama congenital muscular dystrophy, Walker-Warburg syndrome, and muscle-eye-brain disease. In cobblestone lissencephaly, the brain surface actually has a bumpy contour caused by the presence of collections of misplaced neurons and glial cells that have migrated beyond the normal surface boundaries of the brain. Sometimes regions populated by these misplaced cells have caused a radiologic misdiagnosis of polymicrogyria. However, the presence of other abnormalities in these cobblestone lissencephaly syndromes, including ocular anomalies, congenital muscular dystrophy, ventriculomegaly, and cerebellar dysplasia, usually distinguishes these disorders from polymicrogyria. There are no anatomopathologic studies that have characterized the pattern of cortical laminar alterations in patients with GPR56 gene mutations, but it has been suggested that the imaging characteristics of BFPP, including myelination defects and cerebellar cortical dysplasia, are reminiscent of those of the so-called cobblestone malformations (muscle-eye-brain disease and Fukuyama congenital muscular dystrophy) that are also associated with N-glycosylation defects in the developing brain.
Lissencephaly ("smooth brain") is the extreme form of pachygyria. In lissencephaly, few or no sulci are seen on the cortical surface, resulting in a broad, smooth appearance to the entire brain. Lissencephaly can be radiologically confused with polymicrogyria, particularly with low-resolution imaging, but the smoothness and lack of irregularity in the gray-white junction, along with markedly increased cortical thickness, distinguishes lissencephaly.
GPR56 mutation also can cause a severe encelphalopathy which is associated with electro clinical features of the Lennox-Gastaut syndrome. Lennox-Gastaut syndrome can be cryptogenic or symptomatic, but the symptomatic forms have been associated with multiple etiologies and abnormal cortical development. BFPP caused by GPR56 mutations is a representation of a malformation of cortical development that causes Lennox-Gastaut Syndrome.
Polymicrogyria usually gets misdiagnose with pacygyria so therefore it needs to be distinguished from pachygyria. Pachygyria is a distinct brain malformation in which the surface folds are excessively broad and sparse. Pachygyria and polymicrogyria may look similar on low-resolution neuroimaging such as CT because the cortical thickness can appear to be increased and the gyri can appear to be broad and smooth in both conditions. This is why higher resolution neuroimaging are needed such as an MRI.
There are various symptoms of colpocephaly and patients can experience effects ranging from mild to severe. Some patients do not show most of the symptoms related to colpocephaly, such as psychomotor abnormalilities and agenesis of the corpus callosum. In some cases, signs appear later on in life and a significant number of children suffer only from minor disabilities.
The following list includes common symptoms of colpocephaly.
- partial or complete agenesis of the corpus callosum
- intellectual disability
- motor abnormalities
- visual defects such as, crossing of the eyes, missing visual fields, and optic nerve hypoplasia
- spasticity
- seizures
- cerebral palsy
Intracranial abnormalities include:
- Microcephaly
- Agenesis of the corpus callosum
- Meningomyelocele
- Lissencephaly
- Periventricular leukomalacia (PVL)
- Enlargement of the cisterna magna
- Cerebellar hypoplasia
The prognosis for children with NMDs varies depending on the specific disorder and the degree of brain abnormality and subsequent neurological signs and symptoms.
Typically not diagnosed until late childhood or later, Bonnet–Dechaume–Blanc syndrome usually presents itself with a combination of central nervous system features (midbrain), ophthalmic features (retina), and facial features. The degree of expression of the syndrome's components varies both clinically and structurally. Common symptoms that lead to diagnosis are headaches, retro-orbital pain and hemianopia.
The ophthalmic features of the Bonnet–Dechaume–Blanc syndrome occur as retinal arteriovenous malformation (AVMs). There are three categories of AVMs that are categorized depending on the severity of the malformation. The first category consists of the patient having small lesions that usually are asymptomatic. The second category, more severe than the first, is when the patient’s malformation is missing a connecting capillary. The missing capillary is meant to serve as a link between an artery and a vein; without it, edemas, hemorrhages, and visual impairments can result. Category three, the most severe, occurs when the patient’s malformations are so severe that the dilated vessels cause no distinction between artery and vein. When the symptoms are this severe, the patient has a significantly increased risk of developing vision loss. Since the retinal lesions categorized vary from large vascular malformations that affect a majority of the retina to malformations that are barely visible, the lesions cause a wide range of symptoms including decrease in visual sharpness, proptosis, pupillary defects, optic degeneration and visual field defects. The most common type of visual field impairment due to AVMs is homonymous hemianopia. Homonymous hemianopia typically presents unilaterally, but bilateral cases have been reported as well.
The extent of the central nervous system (CNS) features/symptoms of Bonnet–Dechaume–Blanc syndrome is highly dependent of the location of the cerebral AVMs and the extent of the malformation. The most common symptom affecting the CNS is an intracranial hemangioma in the midbrain. Along with hemangiomas, the malformations result in severe headaches, cerebral hemorrhages, vomiting, meningism, seizures, acute strokes or progressive neurological deficits due to acute or chronic ischaemia caused by arteriovenous shunting.
The distinguishable facial features that result from Bonnet–Dechaume–Blanc syndrome vary from case to case. A person showing signs of the syndrome may display faint skin discoloration, nevi and angiomas of the skin. Some patients with this disorder also present with high flow arteriovenous malformations of the maxillofacial or mandibular (jaw) regions. Another facial indicator of this disease is malformations affecting the frontal and/or maxillary sinuses.
There are different tests or methods used to determine GPR56 expression or visuals of the brain to analyze the specific sections that are affected. These tests for example, using animals such as mice, RNAi, Behavioral assay, Electron microscopy, CT scan, or MRI demonstrate different results that concludes an affected BFPP patient. MRI's reveal either irregularity to the cortical surface suggestive of multiple small folds or an irregular, scalloped appearance of the gray matter-white matter junction.
Neuroimaging The diagnosis of polymicrogyria is typically made by magnetic resonance imaging (MRI) since computed tomography (CT) and other imaging methods generally do not have high enough resolution or adequate contrast to identify the small folds that define the condition. The cerebral cortex often appears abnormally thick as well because the multiple small gyri are fused, infolded, and superimposed in appearance.
Neuropathology Gross neuropathologic examination reveals a pattern of complex convolutions to the cerebral cortex, with miniature gyri fused and superimposed together, often resulting in an irregular brain surface. The cortical ribbon can appear excessively thick as a result of the infolding and fusion of multiple small gyri.
Microscopic examination demonstrates that the cerebral cortex is in fact abnormally thin and has abnormal lamination; typically the cortex is unlayered or has four layers, in contrast to the normal six layers. The most superficial layers between adjacent small gyri appear fused, with the pia (layer of the meninges) bridging across multiple gyri. Prenatal diagnosis for BFPP is also available for pregnancies at risk if the GPR56 mutations have been identified in an affected family member.
The degree of cerebral cortex malformation caused by genetic mutations is classified by the degree of malposition and the extent of faulty grey matter differentiation.
Neuronal migration disorders are generally classified into three groups:
- lissencephaly/subcortical band heterotopia
- cobblestone
- ‘other’ heterotopias
The ‘other’ types are associated with corpus callosum agenesis or cerebellar hypoplasia while the cobblestone lissencephalies are associated with eye and muscle disorders.
Classical lissencephaly, also known as type I or generalized agyria-pachygyria, is a severe brain malformation of a smooth cerebral surface, abnormally thick (10-20mm) cortex with four layers, widespread neuronal heterotopia, enlarged ventricles, and agenesis or malformation of the corpus callosum. Classical lissencephaly can range from agyria to regional pachygyria and is usually present along with subcortical band heterotopia (known as ‘double cortex’ to describe the circumferential bands of heterotopic neurons located beneath the cortex). Subcortical band heterotopia is a malformation slightly different from lissencephaly that is now classified under the agyria-pachygyria-band spectrum because it consists of a gyral pattern consistent with broad convolutions and an increased cortical thickness.
The established classification scheme for lissencephaly is based on the severity (grades 1-6) and the gradient.
- Grade 1: generalized agyria
- Grade 2: variable degree of agyria
- Grade 3: variable degree of pachygyria
- Grade 4: generalized pachygyria
- Grade 5: mixed pachygyria and subcortical band heterotopia
- Grade 6: subcortical band heterotopia alone
- Gradient ‘a’: from posterior to anterior gradient
- Gradient ‘b’: from anterior to posterior gradient
Grade 1 and Grade 4 are very rare. Grade 2 is observed in children with Miller-Dieker syndrome (a combination of lissencephaly with dysmorphic facial features, visceral abnormalities, and polydactyly). The most common lissencephaly observed, consisting of frontotemporal pachygyria and posterior agyria, is Grade 3.
Another malformation worth mentioning because of its connections to pachygyria is polymicrogyria. Polymicrogyria is characterized by many small gyri separated by shallow sulci, slightly thin cortex, neuronal heterotopia and enlarged ventricle and is often superimposed on pachygyria.
Additional symptoms include:
- anencephaly (failure of major sections of the brain to form)
- encephalocele (cranial contents protrudes from the skull)
- cyclopia (the two eye cavities fuse into one)
- agnathia
- cleft palate
- arthrogryposis
- clubfeet
- holoprosencephaly
- spina bifida
- low-set ears
- pulmonary hypoplasia
- omphalocele
- gastroschisis
- cardiovascular disorders
- diaphragmatic hernias
- gastrointestinal atresia
- single umbilical artery
- renal abnormalities
- genu recurvatum
- hydramnios
The diagnosis of PMG is merely descriptive and is not a disease in itself, nor does it describe the underlying cause of the brain malformation.
Polymicrogyria may be just one piece of a syndrome of developmental abnormalities, because children born with it may suffer from a wide spectrum of other problems, including global developmental disabilities, mild to severe mental retardation, motor dysfunctions including speech and swallowing problems, respiratory problems, and seizures. Though it is difficult to make a predictable prognosis for children with the diagnosis of PMG, there are some generalized clinical findings according to the areas of the brain that are affected.
- Bilateral frontal polymicrogyria (BFP) – Cognitive and motor delay, spastic quadriparesis, epilepsy
- Bilateral frontoparietal polymicrogyria (BFPP) – Severe cognitive and motor delay, seizures, dysconjugate gaze, cerebellar dysfunction
- Bilateral perisylvian polymicrogyria (BPP) – Pseudobulbar signs, cognitive impairment, epilepsy, some with arthrogryposis or lower motor neuron disease
- Bilateral parasagittal parieto-occipital polymicrogyria (BPPP) – Partial seizures, some with mental retardation
- Bilateral generalized polymicrogyria (BGP) – Cognitive and motor delay of variable severity, seizures
The affected infant tends to be short, with a disproportionately large head. The fetal head of Infants born with iniencephaly are hyperextended while the foramen magnum is enlarged and opens through the widened pedicles. The defective neural arches directly into the upper cervical reach of the spinal canal, causing the formation of a common cavity between most of the spinal cord and the brain. The skin of the anterior chest is connected directly to the face, bypassing the formation of a neck, while the scalp is directly connected to the skin of the back. Because of this, those born with this anomaly either have a highly shortened neck or no neck at all. This causes extreme retroflexion, or backward bending, of the head in a "star-gazing" fashion. The spine is severely distorted as well along with significant shortening due to marked lordosis. The vertebrae, especially cervical, are fused together in abnormal shapes and their numbers are reduced. The spinal cord is almost always defective while the ventricular system is often dilated and the cortex is thinned. Sometimes, in the case of iniencephaly apertus, an encephalocele (sac-like protrusions of the brain through an opening in the cranium) forms.
Subcortical heterotopia form as distinct nodes in the white matter, "focal" indicating specific area. In general, patients present fixed neurologic deficits and develop partial epilepsy between the ages of 6 and 10. The more extensive the subcortical heterotopia, the greater the deficit; bilateral heterotopia are almost invariably associated with severe developmental delay or mental retardation. The cortex itself often suffers from an absence of gray matter and may be unusually thin or lack deep sulci. Subependymal heterotopia are frequently accompanied by other structural abnormalities, including an overall decrease in cortical mass. Patients with focal subcortical heterotopia have a variable motor and intellectual disturbance depending on the size and site of the heterotopion.
The region in which unilateral polymicrogyria occurs has been generalized into different cortical areas. Features associated with this form of polymicrogyria are similar to the other forms and include spastic hemiparesis, mental retardation in variable degrees, and seizures. The features depend on the exact area and extent to which polymicrogyria has affected the cortex. Patients who have unilateral polymicrogyria have been reported to also have electrical status epilepticus during sleep (EPES), and all suffered from seizures.
Bonnet–Dechaume–Blanc syndrome, also known as Wyburn-Mason syndrome, is a rare congential arteriovenous malformation of the brain, retina or facial nevi. The syndrome has a number of possible symptoms and can affect the skin, bones, kidneys, muscles, and gastrointestinal tract. When the syndrome affects the brain, people can experience severe headaches, seizures, acute stroke, meningism and progressive neurological deficits due to acute or chronic ischaemia caused by arteriovenous shunting.
As for the retina, the syndrome causes retinocephalic vascular malformations that tend to be present with intracranial hemorrhage and lead to decreased visual acuity, proptosis, pupillary defects, optic atrophy, congestion of bulbar conjunctiva, and visual field defects. Retinal lesions can be unilateral and tortuous, and symptoms begin to appear in the second and third decades of life.
The syndrome can present cutaneous lesions, or skin with different texture, thickness, and color, usually on the face. The facial features caused by the syndrome vary from slight discoloration to extensive nevi and angiomas of the skin. In some cases, the frontal and maxillary sinus can present problems in the subject due to the syndrome.
There have only been 52 reported cases of patients with Bonnet–Dechaume–Blanc syndrome as of 2012. Symptoms are rarely noticed in children and the syndrome is often diagnosed in late childhood or early adulthood when visual impairment is noticed. Fluorescein angiography is commonly used to diagnose the syndrome.
There have been several methods in treating patients who display Bonnet–Dechaume–Blanc syndrome. However, which method seems to work the most is within argument. Patients with intracranial lesions have been treated with surgical intervention and in some cases, this procedure has been successful. Other treatments include embolization, radiation therapy, and continued observation.
With limited research on Bonnet–Dechaume–Blanc syndrome, researchers have focused on the clinical and radiological findings rather than how to manage this rare and non-heritable syndrome.
Neu-Laxova syndrome presents with severe malformations leading to prenatal or neonatal death. Typically, NLS involves characteristic facial features, decreased fetal movements and skin abnormalities.
Fetuses or newborns with Neu–Laxova syndrome have typical facial characteristics which include proptosis (bulging eyes) with eyelid malformations, nose malformations, round and gaping mouth, micrognathia (small jaw) and low set or malformed ears. Additional facial malformations may be present, such as cleft lip or cleft palate. Limb malformations are common and involve the fingers (syndactyly), hands or feet. Additionally, edema and flexion deformities are often present. Other features of NLS are severe intrauterine growth restriction, skin abnormalities (ichthyosis and hyperkeratosis) and decreased movement.
Malformations in the central nervous system are frequent and may include microcephaly, lissencephaly or microgyria, hypoplasia of the cerebellum and agenesis of the corpus callosum. Other malformations may also be present, such as neural tube defects.
Diagnosis is usually based on clinical observation. Various sets of criteria have been suggested to identify the disorder in an individual patient, all of which include macrocephaly and a number of the following: somatic overgrowth, cutis marmorata, midline facial birthmark, polydactyly/syndactyly, asymmetry (hemihyperplasia or hemihypertrophy), hypotonia at birth, developmental delay, connective tissue defect and frontal bossing. Currently no consensus exists about which diagnostic criteria are definitive and so evaluation by a medical geneticist or other clinician with familiarity with the syndrome is usually needed to provide diagnostic certainty. It is not clear if there are some features which are mandatory to make the diagnosis, but macrocephaly appears essentially universal though may not be congenital. The distinctive vascular abnormalities of the skin often fade over time, making the diagnosis challenging in older children with this condition.
The brain can be affected in several ways in this syndrome. Some children are born with structural brain anomalies such as cortical dysplasia or polymicrogyria. While developmental delay is nearly universal in this syndrome it is variable in severity, with the majority having mild to moderate delays and a minority having severe cognitive impairment. Some patients are affected with a seizure disorder. White matter abnormalities on magnetic resonance imaging (MRI), suggesting a delay in white matter myelination, is commonly seen in early childhood. Some patients may have asymmetry of the brain, with one side being noticeably larger than the other.
One interesting phenomenon that seems very common in this syndrome is the tendency for disproportionate brain growth in the first few years of life, with crossing of percentiles on the head circumference growth charts. A consequence of this disproportionate brain growth appears to be a significantly increased risk of cerebellar tonsillar herniation (descent of the cerebellar tonsils through the foramen magnum of the skull, resembling a Chiari I malformation neuroradiologically) and ventriculomegaly/hydrocephalus. Such cerebellar tonsil herniation may occur in up to 70% of children with M-CM.
The medical literature suggests that there is a risk of cardiac arrhythmias in early childhood. The cause for this is unknown. In addition, a variety of different congenital cardiac malformations have been reported in a small number of patients with this disorder.
Like other syndromes associated with disproportionate growth, there appears to be a slightly increased risk of certain types of childhood malignancies in M-CM (such as Wilms' tumor). However, the precise incidence of these malignancies is unclear.
Gray matter heterotopia (singular "heterotopion") is a neurological disorder caused by clumps of grey matter (ectopic nodules of neurons) located in the wrong part of the brain. It is characterized as a type of cortical dysplasia. The neurons in heterotopia appear to be normal, except for their mislocation; nuclear studies have shown glucose metabolism equal to that of normally positioned gray matter. The condition causes a variety of symptoms, but usually includes some degree of epilepsy or recurring seizures, and often affects the brain's ability to function on higher levels. Symptoms range from nonexistent to profound; the condition is occasionally discovered by brain imaging performed for an unrelated problem and has no apparent ill effect on the patient. At the other extreme, heterotopia can result in severe seizure disorder, loss of motor skills, and mental retardation. Fatalities are practically unknown, other than the death of unborn male fetuses with a specific genetic defect.
Colpocephaly is characterized by disproportionately large occipital horns of the lateral ventricles (also frontal and temporal ventricles in some cases). MRI and CT scans of patients demonstrate abnormally thick gray matter with thin poorly myelinated white matter. This happens as a result of partial or complete absence of the corpus callosum. Corpus callosum is the band of white matter connecting the two cerebral hemispheres. The corpus callosum plays an extremely important role in interhemispheric communication, thus lack of or absence of these neural fibers results in a number of disabilities.
The lemon sign on CT scans of patients refers to the shape of the fetal skull when the frontal bones lose their normal convex contour and appear flattened or inwardly scalloped. This gives the skull a shape similar to that of a lemon. The sign is seen on transverse sonograms of the fetal cranium obtained at the level of the ventricles.
A special case is found in literature where lissencephaly, colpocephaly, and septal agenesis are all present together. The CT scans of the patient shows the ventricular system having a unique appearance of a crown of a king. This is referred to as the 'CROWN SIGN'.
Macrocephaly-capillary malformation (M-CM) is a multiple malformation syndrome causing abnormal body and head overgrowth and cutaneous, vascular, neurologic, and limb abnormalities. Though not every patient has all features, commonly found signs include macrocephaly, congenital macrosomia, extensive cutaneous capillary malformation (naevus flammeus or port-wine stain type birthmark over much of the body; a capillary malformation of the upper lip or philtrum is seen in many patients with this condition), body asymmetry (also called hemihyperplasia or hemihypertrophy), polydactyly or syndactyly of the hands and feet, lax joints, doughy skin, variable developmental delay and other neurologic problems such as seizures and low muscle tone.
Hemimegalencephaly (HME), or unilateral megalencephaly, is a rare congenital disorder affecting all or a part of a cerebral hemisphere.
Neu–Laxova syndrome (also known as Neu syndrome or Neu-Povysilová syndrome, abbreviated as NLS) is a rare autosomal recessive disorder characterized by severe intrauterine growth restriction and multiple congenital malformations. Neu–Laxova syndrome is a very severe disorder, leading to stillbirth or neonatal death. It was first described by Dr. Richard Neu in 1971 and Dr. Renata Laxova in 1972 as a lethal disorder in siblings with multiple malformations. Neu–Laxova syndrome is an extremely rare disorder with less than 100 cases reported in medical literature.
The blockage of cerebrospinal fluid (CSF) flow may also cause a syrinx to form, eventually leading to syringomyelia. Central cord symptoms such as hand weakness, dissociated sensory loss, and, in severe cases, paralysis may occur.
Encephaloceles are often accompanied by craniofacial abnormalities or other brain malformations. Symptoms may include neurologic problems, hydrocephalus (cerebrospinal fluid accumulated in the brain), spastic quadriplegia (paralysis of the limbs), microcephaly (an abnormally small head), ataxia (uncoordinated muscle movement), developmental delay, vision problems, mental and growth retardation, and seizures.
Usually encephaloceles are noticeable deformities and are diagnosed immediately after birth, but a small encephalocele in the nasal or forehead region can go undetected. Various physical and mental developmental delays can indicate the presence of encephaloceles.
Peripheral Territory Lesions
1. Contralateral homonymous hemianopsia
2. cortical blindness with bilateral involvement of the occipital lobe branches
3. visual agnosia
4. prosopagnosia
5. dyslexia, Anomic aphasia, color naming and discrimination problems
6. memory defect
7. topographic disorientation
Central Territory Lesions
1. central post-stroke (thalamic) pain: spontaneous pain, dysesthesias and sensory impairments
2. involuntary movements: chorea, intention tremor, hemiballismus
3. contralateral hemiplegia
4. Weber’s syndrome: occulomotor nerve palsy
5. Bálint's syndrome: loss of voluntary eye movements optic ataxia, asimultagnosia (inability to understand visual objects)