Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The major clinical symptom of metastatic medullary thyroid carcinoma is diarrhea; occasionally a patient will have flushing episodes. Both occur particularly with liver metastasis, and either symptom may be the first manifestation of the disease. The flushing that occurs in medullary thyroid carcinoma is indistinguishable from that associated with carcinoid syndrome. In MTC, the flushing, diarrhea, and itching (pruritis) are all caused by elevated levels of calcitonin gene products (calcitonin or calcitonin gene-related peptide). Alternatively, the flushing and diarrhea observed in carcinoid syndrome is caused by elevated levels of circulating serotonin.
Medullary thyroid carcinoma may also produce a thyroid nodule and enlarged cervical lymph nodes.
Sites of spread of medullary thyroid carcinoma include local lymph nodes in the neck, lymph nodes in the central portion of the chest (mediastinum), liver, lung, and bone. Spread to other sites such as skin or brain occurs but is uncommon.
Medullary thyroid cancer (MTC) is a form of thyroid carcinoma which originates from the parafollicular cells (C cells), which produce the hormone calcitonin.
Medullary tumors are the third most common of all thyroid cancers. They make up about 3% of all thyroid cancer cases.
Approximately 25% of medullary thyroid cancer is genetic in nature, caused by a mutation in the RET proto-oncogene. This form is classified as familial MTC. When MTC occurs by itself it is termed sporadic MTC. When it coexists with tumors of the parathyroid gland and medullary component of the adrenal glands (pheochromocytoma) it is called multiple endocrine neoplasia type 2 (MEN2).It was first characterized in 1959.
The clinical manifestation and presentation of symptoms of lymphedema develop following a significant degree of injury. Secondary lymphedema is the lymphadenectomy and lymphatic injury following surgery, radiation, chemotherapy, and/or trauma which healing or regeneration of damaged lymphatics may occur with variable success.
Symptoms will include swelling, edema, and pain from a multitude of secondary complications (pressure, musculoskeletal disorder from asymmetry, restricted blood flow). Most patients will avoid discussing pain for many reasons, so this will require logical thinking or communication skills to assess. In advanced lymphedema, there may be the presence of skin changes such as discoloration, verrucous (wart-like) hyperplasia, hyperkeratosis, papillomatosis, and Ulcer (dermatology).
Lymphedema should not be confused with edema arising from venous insufficiency, which is not lymphedema. In addition to a compressive local environment of lymphedematous extremity, long standing venous compression potentially contributed to an increased propensity for thrombosis due to vascular changes from longstanding venous hypertension from a proximal compression or simply from a change in blood flow. However, untreated venous insufficiency can progress into a combined venous/lymphatic disorder. Proper imaging can help identify where the dysfunction is in the system, and is essential in identifying the source before treatment is decided.
Presented here is an extreme case of severe unilateral hereditary lymphedema which had been present for 25 years without treatment:
Congenital lymphedema is swelling that results from abnormalities in the lymphatic system that are present from birth. Swelling may be present in a single affected limb, several limbs, genitalia, or the face. It is sometimes diagnosed prenatally by a nuchal scan or post-natally by lymphoscintigraphy. A hereditary form of congenital lymphedema is called Milroy's disease and is caused by mutations in the VEGFR3 gene. Congenital lymphedema is frequently syndromic and is associated with Turner syndrome, lymphedema–distichiasis syndrome, yellow nail syndrome, and Klippel–Trénaunay–Weber syndrome. In some cases, the condition can sometimes be associated with congenital heart defect, among other things.
Congenital lymphedema is the presence or development of lymphedema without any relation to any underlying medical condition. Primary lymphedema has a quoted incidence of approximately 1-3 births out of every 10,000 births, with a particular female preponderance to male ratio of 3.5:1 In North America, the incidence of primary lymphedema is approximately 1.15 births out of every 100,000 births Compared to secondary lymphedema, primary lymphedema is relatively rare.
In psychology and neuroscience, executive dysfunction, or executive function deficit, is a disruption to the efficacy of the executive functions, which is a group of cognitive processes that regulate, control, and manage other cognitive processes. Executive dysfunction can refer to both neurocognitive deficits and behavioural symptoms. It is implicated in numerous psychopathologies and mental disorders, as well as short-term and long-term changes in non-clinical executive control.
Executive dysfunction is not the same as dysexecutive syndrome, a term coined by Alan Baddeley to describe a common pattern of dysfunction in executive functions, such as deficiencies in planning, abstract thinking, flexibility and behavioural control. This group of symptoms, usually resulting from brain damage, tend to occur together. However, the existence of dysexecutive syndrome is controversial.
Long-term misuse of alcohol can cause a wide range of mental health problems. Severe cognitive problems are common; approximately 10 percent of all dementia cases are related to alcohol consumption, making it the second leading cause of dementia. Excessive alcohol use causes damage to brain function, and psychological health can be increasingly affected over time. Social skills are significantly impaired in people suffering from alcoholism due to the neurotoxic effects of alcohol on the brain, especially the prefrontal cortex area of the brain. The social skills that are impaired by alcohol abuse include impairments in perceiving facial emotions, prosody perception problems and theory of mind deficits; the ability to understand humour is also impaired in alcohol abusers. Psychiatric disorders are common in alcoholics, with as many as 25 percent suffering severe psychiatric disturbances. The most prevalent psychiatric symptoms are anxiety and depression disorders. Psychiatric symptoms usually initially worsen during alcohol withdrawal, but typically improve or disappear with continued abstinence. Psychosis, confusion, and organic brain syndrome may be caused by alcohol misuse, which can lead to a misdiagnosis such as schizophrenia. Panic disorder can develop or worsen as a direct result of long-term alcohol misuse.
The co-occurrence of major depressive disorder and alcoholism is well documented. Among those with comorbid occurrences, a distinction is commonly made between depressive episodes that remit with alcohol abstinence ("substance-induced"), and depressive episodes that are primary and do not remit with abstinence ("independent" episodes). Additional use of other drugs may increase the risk of depression. Psychiatric disorders differ depending on gender. Women who have alcohol-use disorders often have a co-occurring psychiatric diagnosis such as major depression, anxiety, panic disorder, bulimia, post-traumatic stress disorder (PTSD), or borderline personality disorder. Men with alcohol-use disorders more often have a co-occurring diagnosis of narcissistic or antisocial personality disorder, bipolar disorder, schizophrenia, impulse disorders or attention deficit/hyperactivity disorder (ADHD). Women with alcoholism are more likely to experience physical or sexual assault, abuse and domestic violence than women in the general population, which can lead to higher instances of psychiatric disorders and greater dependence on alcohol.
Drinking enough to cause a blood alcohol concentration (BAC) of 0.03–0.12% typically causes an overall improvement in mood and possible euphoria (a "happy" feeling), increased self-confidence and sociability, decreased anxiety, a flushed, red appearance in the face and impaired judgment and fine muscle coordination. A BAC of 0.09% to 0.25% causes lethargy, sedation, balance problems and blurred vision. A BAC of 0.18% to 0.30% causes profound confusion, impaired speech (e.g. slurred speech), staggering, dizziness and vomiting. A BAC from 0.25% to 0.40% causes stupor, unconsciousness, anterograde amnesia, vomiting (death may occur due to inhalation of vomit (pulmonary aspiration) while unconscious and respiratory depression (potentially life-threatening). A BAC from 0.35% to 0.80% causes a coma (unconsciousness), life-threatening respiratory depression and possibly fatal alcohol poisoning. With all alcoholic beverages, drinking while driving, operating an aircraft or heavy machinery increases the risk of an accident; many countries have penalties for drunk driving.
Symptoms of pulmonary embolism are typically sudden in onset and may include one or many of the following: dyspnea (shortness of breath), tachypnea (rapid breathing), chest pain of a "pleuritic" nature (worsened by breathing), cough and hemoptysis (coughing up blood). More severe cases can include signs such as cyanosis (blue discoloration, usually of the lips and fingers), collapse, and circulatory instability because of decreased blood flow through the lungs and into the left side of the heart. About 15% of all cases of sudden death are attributable to PE.
On physical examination, the lungs are usually normal. Occasionally, a pleural friction rub may be audible over the affected area of the lung (mostly in PE with infarct). A pleural effusion is sometimes present that is exudative, detectable by decreased percussion note, audible breath sounds, and vocal resonance. Strain on the right ventricle may be detected as a left parasternal heave, a loud pulmonary component of the second heart sound, and/or raised jugular venous pressure. A low-grade fever may be present, particularly if there is associated pulmonary hemorrhage or infarction.
As smaller pulmonary emboli tend to lodge in more peripheral areas without collateral circulation they are more likely to cause lung infarction and small effusions (both of which are painful), but not hypoxia, dyspnea or hemodynamic instability such as tachycardia. Larger PEs, which tend to lodge centrally, typically cause dyspnea, hypoxia, low blood pressure, fast heart rate and fainting, but are often painless because there is no lung infarction due to collateral circulation. The classic presentation for PE with pleuritic pain, dyspnea and tachycardia is likely caused by a large fragmented embolism causing both large and small PEs. Thus, small PEs are often missed because they cause pleuritic pain alone without any other findings and large PEs often missed because they are painless and mimic other conditions often causing ECG changes and small rises in troponin and BNP levels.
PEs are sometimes described as massive, submassive and nonmassive depending on the clinical signs and symptoms. Although the exact definitions of these are unclear, an accepted definition of massive PE is one in which there is hemodynamic instability such as sustained low blood pressure, slowed heart rate, or pulselessness.
Pulmonary embolism (PE) is a blockage of an artery in the lungs by a substance that has traveled from elsewhere in the body through the bloodstream (embolism). Symptoms of a PE may include shortness of breath, chest pain particularly upon breathing in, and coughing up blood. Symptoms of a blood clot in the leg may also be present such as a red, warm, swollen, and painful leg. Signs of a PE include low blood oxygen levels, rapid breathing, rapid heart rate, and sometimes a mild fever. Severe cases can lead to passing out, abnormally low blood pressure, and sudden death.
PE usually results from a blood clot in the leg that travels to the lung. The risk of blood clots is increased by cancer, prolonged bed rest, smoking, stroke, certain genetic conditions, estrogen-based medication, pregnancy, obesity, and after some types of surgery. A small proportion of cases are due to the embolization of air, fat, or amniotic fluid. Diagnosis is based on signs and symptoms in combination with test results. If the risk is low a blood test known as a D-dimer will rule out the condition. Otherwise a CT pulmonary angiography, lung ventilation/perfusion scan, or ultrasound of the legs may confirm the diagnosis. Together deep vein thrombosis and PE are known as venous thromboembolism (VTE).
Efforts to prevent PE include beginning to move as soon as possible after surgery, lower leg exercises during periods of sitting, and the use of blood thinners after some types of surgery. Treatment is typically with blood thinners such as heparin or warfarin. Often these are recommended for six months or longer. Severe cases may require thrombolysis using medication such as tissue plasminogen activator (tPA), or may require surgery such as a pulmonary thrombectomy. If blood thinners are not appropriate, a vena cava filter may be used.
Pulmonary emboli affect about 430,000 people each year in Europe. In the United States between 300,000 and 600,000 cases occur each year, which results in between 50,000 and 200,000 deaths. Rates are similar in males and females. They become more common as people get older.
The cause of executive dysfunction is heterogeneous, as many neurocognitive processes are involved in the executive system and each may be compromised by a range of genetic and environmental factors. Learning and development of long-term memory play a role in the severity of executive dysfunction through dynamic interaction with neurological characteristics. Studies in cognitive neuroscience suggest that executive functions are widely distributed throughout the brain, though a few areas have been isolated as primary contributors. Executive dysfunction is studied extensively in clinical neuropsychology as well, allowing correlations to be drawn between such dysexecutive symptoms and their neurological correlates.
Executive processes are closely integrated with memory retrieval capabilities for overall cognitive control; in particular, goal/task-information is stored in both short-term and long-term memory, and effective performance requires effective storage and retrieval of this information.
Executive dysfunction characterizes many of the symptoms observed in numerous clinical populations. In the case of acquired brain injury and neurodegenerative diseases there is a clear neurological etiology producing dysexecutive symptoms. Conversely, syndromes and disorders are defined and diagnosed based on their symptomatology rather than etiology. Thus, while Parkinson's disease, a neurodegenerative condition, causes executive dysfunction, a disorder such as attention-deficit/hyperactivity disorder is a classification given to a set of subjectively-determined symptoms implicating executive dysfunction – current models indicate that such clinical symptoms are caused by executive dysfunction.