Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The causes of CCAS lead to variations in symptoms, but a common core of symptoms can be seen regardless of etiology. Causes of CCAS include cerebellar agenesis, dysplasia and hypoplasia, cerebellar stroke, tumor, cerebellitis, trauma, and neurodegenerative diseases. CCAS can also be seen in children with prenatal, early postnatal, or developmental lesions. In these cases there are lesions of the cerebellum resulting in cognitive and affect deficits. The severity of CCAS varies depending on the site and extent of the lesion. In the original report that described this syndrome, patients with bihemispheric infarction, pancerebellar disease, or large unilateral posterior inferior cerebellar artery (PICA) infarcts had more cognitive deficits than patients with small right PICA infarcts, small right anterior interior cerebellar artery infarcts or superior cerebellar artery (SCA) territory. Overall, patients with damage to either the posterior lobe of the cerebellum or with bilateral lesions had the greatest severity of symptoms, whereas patients with lesions in the anterior lobe had less severe symptoms. In children, it was found that those with astrocytoma performed better than those with medulloblastoma on neuropsychological tests. When diagnosing a patient with CCAS, medical professionals must remember that CCAS has many different causes.
The CCAS has been described in both adults and children. The precise manifestations may vary on an individual basis, likely reflecting the precise location of the injury in the cerebellum. These investigators subsequently elaborated on the affective component of the CCAS, i.e., the neuropsychiatric phenomena. They reported that patients with injury isolated to the cerebellum may demonstrate distractibility, hyperactivity, impulsiveness, disinhibition, anxiety, ritualistic and stereotypical behaviors, illogical thought and lack of empathy, aggression, irritability, ruminative and obsessive behaviors, dysphoria and depression, tactile defensiveness and sensory overload, apathy, childlike behavior, and inability to comprehend social boundaries and assign ulterior motives.
The CCAS can be recognized by the pattern of deficits involving executive function, visual-spatial cognition, linguistic performance and changes in emotion and personality. Underdiagnosis may reflect lack of familiarity of this syndrome in the scientific and medical community. The nature and variety of the symptoms may also prove challenging. Levels of depression, anxiety, lack of emotion, and affect deregulation can vary between patients. The symptoms of CCAS are often moderately severe following acute injury in adults and children, but tend to lessen with time. This supports the view that the cerebellum is involved with the regulation of cognitive processes.
Dysmetria () refers to a lack of coordination of movement typified by the undershoot or overshoot of intended position with the hand, arm, leg, or eye. It is a type of ataxia. It is sometimes described as an inability to judge distance or scale.
Hypermetria and hypometria refer, respectively, to overshooting and undershooting the intended position.
The actual cause of dysmetria is thought to be caused by lesions in the cerebellum or by lesions in the proprioceptive nerves that lead to the cerebellum that coordinate visual, spatial and other sensory information with motor control. Damage to the proprioceptive nerves does not allow the cerebellum to accurately judge where the hand, arm, leg, or eye should move. These lesions are often caused by strokes, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or tumors.
According to the research article cited above, motor control is a learning process that utilizes APPGs. Disruption of APPGs is possibly the cause of ataxia and dysmetria and upon identification of the motor primitives, clinicians may be able to isolate the specific areas responsible for the cerebellar problems.
There are two types of cerebellar disorders that produce dysmetria, specifically midline cerebellar syndromes and hemispheric cerebellar syndromes. Midline cerebellar syndromes can cause ocular dysmetria, which is a condition in which the pupils of the eye overshoot. Ocular dysmetria makes it difficult to focus vision onto one object. Hemispheric cerebellar syndromes cause dysmetria in the typical motor sense that many think of when hearing the term dysmetria.
A common motor syndrome that causes dysmetria is cerebellar motor syndrome, which also marked by impairments in gait (also known as ataxia), disordered eye movements, tremor, difficulty swallowing and poor articulation. As stated above, cerebellar cognitive affective syndrome (CCAS) also causes dysmetria.
In order to help in classification, methods other than a genitalia inspection can be performed. For instance, a karyotype display of a tissue sample may determine which of the causes of intersex is prevalent in the case.
Ambiguous genitalia may appear as a large clitoris or as a small penis.
Because there is variation in all of the processes of the development of the sex organs, a child can be born with a sexual anatomy that is typically female or feminine in appearance with a larger-than-average clitoris (clitoral hypertrophy) or typically male or masculine in appearance with a smaller-than-average penis that is open along the underside. The appearance may be quite ambiguous, describable as female genitals with a very large clitoris and partially fused labia, or as male genitals with a very small penis, completely open along the midline ("hypospadic"), and empty scrotum. Fertility is variable.