Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
SHORT is an acronym for short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, rieger anomaly and teething delay.
Other characteristics common in SHORT syndrome are a triangular face, small chin with a dimple, a loss of fat under the skin (lipodystrophy), abnormal position of the ears, hearing loss and delayed speech.
Genitopatellar syndrome is a rare condition characterized by genital abnormalities, missing or underdeveloped kneecaps (patellae), intellectual disability, and abnormalities affecting other parts of the body.
Genitopatellar syndrome is also associated with delayed development and intellectual disability, which are often severe. Affected individuals may have an unusually small head (microcephaly) and structural brain abnormalities, including underdeveloped or absent tissue connecting the left and right halves of the brain (agenesis of the corpus callosum).
Because collagen plays an important role in the development of the body, people with Kniest Dysplasia will typically have their first symptoms at birth. These symptoms can include:.
- Musculoskeletal Problems
- Short limbs
- Shortened body trunk
- Flattened bones in the spine
- kyphoscoliosis
- Scoliosis (Lateral curvature of the spine)
- Early development of arthritis
- Respiratory problems
- Respiratory tract infection
- Difficulty breathing
- Eye problems
- Severe myopia (near-sightedness)
- Cataract (cloudiness in the lens of the eye)
- Hearing problems
- progressive hearing loss
- ear infections
Most symptoms are chronic and will continue to worsen as the individual ages. It is essential to have regular checkups with general doctors, orthopedist, ophthalmologists, and/or otorhinolaryngologists. This will help to detect whether there are any changes that could cause concern.
The primary malformation apparent with JBS is hypoplasia (underdevelopment) of the nasal alae, or "wing of the nose". Both hypoplasia and aplasia (partial or complete absence) of structural cartilage and tissue in this area of the nose, along with the underlying alae nasi muscle, are prevailing features of the disorder. Together, these malformations give the nose and nostrils an odd shape and appearance.
Other abnormalities, affecting the scalp, head, face, jaw and teeth may be found with JBS. These include: ectodermal mid-line scalp defects with sparse, oddly-patterned hair growth; aplasia cutis (underdeveloped, very thin skin) over the head, an enlarged fontanelle ("soft spot" on the head of young infants), microcephaly (undersized skull), prominent forehead, absence of eyebrows and eyelashes, mongoloidal eye shape, nasolacrimo-cutaneous fistulae (this refers to the formation of an abnormal secondary passageway from either the tear duct or lacrimal sac to the facial skin surface, possibly discharging fluid), flattened ears, micrognathism of the maxilla and mandible (underdevelopment of the upper and lower jaw, respectively), with the maxilla more prominently affected in some cases; congenital clefting of bones surrounding the optical orbit (eye socket), such as the frontal and lacrimal bone; and maldeveloped deciduous teeth ("baby teeth"), with an absence of permanent teeth.
The facial appearance of individuals with this syndrome include long eyelids with turning up of the lateral third of the lower eyelid, a broad and depressed nasal tip, large prominent earlobes, and a cleft or high-arched palate.
Other clinical features often include scoliosis, short fifth finger, persistence of fingerpads, and X-ray abnormalities of the vertebrae, hands, and hip joints.
There is a wide range of congenital problems associated with kabuki syndrome with large differences between affected individuals. Some of the common problems are heart defects, urinary tract anomalies, hearing loss, hypotonia, recurrent ear infections and postnatal growth deficiency. Other characteristics include skeletal abnormality, joint laxity, short stature, and unusual dermatoglyphic patterns.
In terms of development, mild to moderate intellectual disability is a common feature. Also, children with kabuki syndrome often have distinctive behavioral features. A few have normal intelligence, most of whom have learning difficulties such as struggling with fine motor, speech skills, and memory.
There is no indication that the life expectancy of individuals with kabuki syndrome is shortened. Most medical issues are resolved with medical intervention. The fact that there are relatively few adults known with this syndrome is probably related to its recent discovery in 1980 in Japan and around 1990 in Europe and America.
Being an extremely rare autosomal genetic disorder, differential diagnosis has only led to several cases since 1972. Initial diagnosis lends itself to facial abnormalities including sloping forehead, maxillary hypoplasia, nasal bridge depression, wide mouth, dental maloclusion, and receding chin. Electroencephalography (EEG), computed tomography (CT) scanning, and skeletal survey are further required for confident diagnosis. Commonly, diffuse cartilage calcification and brachytelephalangism are identified by X-radiation (X-ray), while peripheral pulmonary arterial stenosis, hearing loss, dysmorphic facies, and mental retardation are confirmed with confidence by the aforementioned diagnostic techniques.
Genitopatellar syndrome is a rare disorder with characteristic craniofacial features, congenital flexion contractures of the lower limbs, absent or abnormal patellae, urogenital anomalies, and severe psychomotor retardation.
In 2012, it was shown that mutations in the gene KAT6B cause the syndrome.
SHORT syndrome is a medical condition in which affected individuals have multiple birth defects in different organ systems.
It was characterized in 1975.
Appearance at birth and during the early years is normal but features become more prominent during later childhood prior to puberty. The main issues appear to be lipodystrophy (see below) and slow growth of cartilage and ligaments. The slow growth of cartilage and ligaments results in a small nose, small mandible (jaw), small ears and tightening of ligaments in the limbs. A small larynx (due to
the reduced growth of cartilage) can mean the voice is likely to remain high pitched (even in boys after puberty).
Symptoms for Alström syndrome generally appear during infancy with great variability in age. Some of the symptoms include:
- Heart failure (Dilated cardiomyopathy) in over 60% of cases, usually within the first few weeks after birth, but sometimes the onset is in adolescence or adulthood.
- Light sensitivity and vision problems (Cone-rod dystrophy) in all cases, usually within 15 months of birth and progressively worsening until about 20 years of age
- Delays in early, developmental milestones in 50% of cases, learning disabilities in about 30% of cases
- Obesity in 100% of cases, apparent by 5 years of age, but often apparent in infancy (Alström infants usually have normal birth weights, and by adolescence, weights tend to be in the high-normal to normal range)
- Nystagmus (usually affects the children) one of the first symptoms to occur which causes involuntary rapid eye movement.
- Heart failure (Dilated cardiomyopathy) in over 60% of cases, usually within the first few weeks after birth, but sometimes the onset is in adolescence or adulthood.(chronic)
- Mild to moderate bilateral sensorineural hearing loss.
- Type 2 diabetes usually occurs in early childhood.
- Hyperinsulinemia/ insulin resistance—development of high level of insulin in blood.
- Steatosis (fatty liver) and elevated transaminases (liver enzymes) often develop in childhood and can progress in some patients to cirrhosis and liver failure.
- Endocrine dysfunctions may occur where the patient may experience an under or over active thyroid gland, weak growth hormone, increased androgen in females, and low testosterone in males.
- Slowly progressive kidney failure can occur in the second to fourth decade of life.
Diagnosis is often confirmed by several abnormalities of skeletal origin. There is a sequential order of findings, according to Cormode et al., which initiate in abnormal cartilage calcification and later brachytelephalangism. The uniqueness of brachytelephalangy in KS results in distinctively broadened and shortened first through fourth distal phalanges, while the fifth distal phalanx bone remains unaffected. Radiography also reveals several skeletal anomalies including facial hypoplasia resulting in underdevelopment of the nasal bridge with noticeably diminished alae nasi. In addition to distinguishable facial features, patients generally demonstrate shorter than average stature and general mild developmental delay.
The diagnosis of MDP syndrome is suggested by the clinical features. It can be confirmed by finding a mutation in the POLD1 gene, a service offered by the molecular genetics team at the Royal Devon and Exeter NHS Foundation Trust / Exeter University who originally discovered the genetic cause.
Spondyloperipheral dysplasia is an autosomal dominant disorder of bone growth. The condition is characterized by flattened bones of the spine (platyspondyly) and unusually short fingers and toes (brachydactyly). Some affected individuals also have other skeletal abnormalities, short stature, nearsightedness (myopia), hearing loss, and mental retardation. Spondyloperipheral dysplasia is a subtype of collagenopathy, types II and XI.
Kniest Dysplasia is a rare form of dwarfism caused by a mutation in the COL2A1 gene on chromosome 12. The COL2A1 gene is responsible for producing type II collagen. The mutation of COL2A1 gene leads to abnormal skeletal growth and problems with hearing and vision. What characterizes kniest dysplasia from other type II Osteochondrodysplasia is the level of severity and the dumb-bell shape of shortened long tubular bones. This condition was first diagnosed by Dr. Wilhelm Kniest in 1952. Dr. Kniest noticed that his 50 year old patient was having difficulties with restricted joint mobility. The patient had a short stature and was also suffering from blindness. Upon analysis of the patient's DNA, Dr. Kniest discovered that a mutation had occurred at a splice site of the COL2A1 gene. This condition is very rare and occurs less than 1 in 1,000,000 people. Males and females have equal chances of having this condition. Currently, there is no cure for kniest dysplasia. Alternative names for Kniest Dysplasia can include Kniest Syndrome, Swiss Cheese Cartilage Syndrome, Kniest Chondrodystrophy, or Metatrophic Dwarfism Type II.
The cranium consists of three main sections including the base of the cranium (occipital bone), the face (frontal bone), and the top (parietal bones) and sides (temporal bone) of the head. Most of the bones of the cranium are permanently set into place prior to birth. However, the temporal and parietal bones are separated by sutures, which remain open, allowing the head to slightly change in shape during childbirth. The cranial sutures eventually close within the first couple of years following birth, after the brain has finished growing.
In individuals with SCS, the coronal suture separating the frontal bones from the parietal bones, closes prematurely (craniosynostosis), occasionally even before birth. If the coronal suture closes asymmetrically or unilaterally, then the face and forehead will form unevenly, from side-to-side. People with SCS have pointy, tower-like heads because their brain is growing faster than their skull, resulting in increased intracranial pressure (ICP) and causing the top of the head and/or forehead to bulge out to allow for brain growth. The face appears uneven, particularly in the areas of the eyes and cheeks, and the forehead appears wide and tall.
Because of the abnormal forehead, there is less space for the normal facial features to develop. This results in shallow eye sockets and flat cheekbones. The shallow eye sockets make the eyes more prominent or bulging and cause the eyes to be more separated than normal (hypertelorism). The underdeveloped eye sockets, cheekbones, and lower jaw cause the face to appear flat. Furthermore, the minor downward slant of the eyes along with the drooping eyelids (ptosis) adds to the overall unevenness of the face.
This condition occurs almost exclusively in males. The mutation may be spontaneous or inherited from the mother. The typical clinical features are:
- flat nasal tip
- short columella
- maxillary hypoplasia
- involvement of terminal phalanges
- stippled chondrodystrophy
X-linked recessive chondrodysplasia punctata is a type of chondrodysplasia punctata that can involve the skin, hair, and cause short stature with skeletal abnormalities, cataracts, and deafness.
This condition is also known as arylsulfatase E deficiency, CDPX1, and X-linked recessive chondrodysplasia punctata 1. The syndrome rarely affects females, but they can be carriers of the recessive allele. Although the exact number of people diagnosed with CDPX1 is unknown, it was estimated that 1 in 500,000 have CDPX1 in varying severity. This condition is not linked to a specific ethnicity. The mutation that leads to a deficiency in arylsulfatase E. (ARSE) occurs in the coding region of the gene.Absence of stippling, deposits of calcium, of bones and cartilage, shown on x-ray, does not rule out chondrodysplasia punctata or a normal chondrodysplasia punctata 1 (CDPX1) gene without mutation. Stippling of the bones and cartilage is rarely seen after childhood. Phalangeal abnormalities are important clinical features to look for once the stippling is no longer visible. Other, more severe, clinical features include respiratory abnormalities, hearing loss, cervical spine abnormalities, delayed cognitive development, ophthalmologic abnormalities, cardiac abnormalities, gastroesophageal reflux, and feeding difficulties. CDPX1 actually has a spectrum of severity; different mutations within the CDPX1 gene have different effects on the catalytic activity of the ARSE protein. The mutations vary between missense, nonsense, insertions, and deletions.
Following are the features and characteristics that help in spotting this disorder:
- Low birth weight (usually under 5 pounds/2.5 kilograms)
- Delayed growth and small stature
- Developmental delay
- Limb differences (missing limbs or portions of limbs)
- Small head size (microcephaly)
- Thick eyebrows, which typically meet at midline (synophrys)
- Long eyelashes
- Short upturned nose and thin downturned lips
- Long philtrum
- Excessive body hair
- Small hands and feet
- Small widely spaced teeth
- Low-set ears
- Hearing impairments
- Vision abnormalities (e.g., ptosis, nystagmus, high myopia, hypertropia)
- Partial joining of the second and third toes
- Incurved 5th fingers (clinodactyly)
- Gastroesophageal reflux
- Seizures
- Heart defects (e.g., pulmonary stenosis, VSD, ASD, coarctation of the aorta)
- Cleft palate
- Feeding problems
- Hypoplastic genitalia
Children with this syndrome are often found to have long eyelashes, bushy eyebrows and synophrys (joined eyebrows). Body hair can be excessive and affected individuals are often shorter than their immediate family members. They present a characteristic facial phenotype and is recognizable with the Facial Dysmorphology Novel Analysis (FDNA) technology
CdLS can give rise to its own array of complexities. Children with CdLS often suffer from gastrointestinal tract difficulties, particularly gastroesophageal reflux. Vomiting, intermittent poor appetite, constipation, diarrhea or gaseous distention are known to be a regularity in cases where the GI tract problems are acute. Symptoms may range from mild to severe.
CdLS may include behavior problems, including self-stimulation, aggression, self-injury or strong preference to a structured routine. Many children with CdLS exhibit autistic-like behaviors.
Behavior problems in CdLS are not inevitable. Many behavior issues associated with CdLS are reactive (i.e., something happens within the person's body or environment to bring on the behavior) and cyclical (comes and goes). Often, an underlying medical issue causes a change in behavior. Once the medical issue is treated, the behavior diminishes.
Genetic changes are related to the following types of collagenopathy, types II and XI.
The system for classifying collagenopathies is changing as researchers learn more about the genetic causes of these disorders.The clinical features of the type II and XI collagenopathies vary among the disorders, but there is considerable overlap. Common signs and symptoms include problems with bone development that can result in short stature, enlarged joints, spinal curvature, and arthritis at a young age. For some people, bone changes can be seen only on X-ray images. Problems with vision and hearing, as well as a cleft palate with a small lower jaw, are common. Some individuals with these disorders have distinctive facial features such as protruding eyes and a flat nasal bridge.
Individuals with SCS are all affected differently. Even within the same family, affected individuals have different features. The majority of individuals with SCS are moderately affected, with uneven facial features and a relatively flat face due to underdeveloped eye sockets, cheekbones, and lower jaw. In addition to the physical abnormalities, people with SCS also experience growth delays, which results in a relatively short stature. Although, most individuals with SCS are of normal intelligence, some individuals may have mild to moderate mental retardation (IQ from 50-70). More severe cases of SCS, with more serious facial deformities, occurs when multiple cranial sutures close prematurely.
People with chondrodystrophy have a normal-sized trunk and abnormally short limbs and extremities (dwarfism). Those affected with the disorder often call themselves dwarves, little people or short-statured persons. Over 100 specific skeletal dysplasias have been identified. Chondrodystrophy is found in all races and in both females and male and occurs in around one of every 25,000 children. Chondrodystrophy and achondroplasia are the most common forms of genetic hyaline disorders.
Hyaline cartilage caps the long bones and the spinal vertebrae. Most childhood limb growth takes place at the ends of the long bones, not in the shaft. Normally, as a child grows, the most interior portion of the joint cartilage converts into bone, and new cartilage forms on the surface to maintain smooth joints. The old joint margins (edges) reabsorb, so that the overall shape of the joint is maintained as growth continues. Failure of this process throughout the body results in skeletal dysplasia. It also leads to very early onset of osteoarthritis, because the defective cartilage is extremely fragile and vulnerable to normal wear and tear.
Alström syndrome, also called Alstrom-Halgren syndrome, is a rare genetic disorder caused by mutations in the gene ALMS1. It is among the rarest genetic disorders in the world, as currently it has only 266 reported cases in medical literature and over 501 known cases in 47 countries. It was first described by Carl-Henry Alström in Sweden in 1959. Alstrom syndrome is sometimes confused with Bardet-Biedl syndrome, which has similar symptoms. Bardet-Biedl syndrome tends to have later onset in its symptoms. The likelihood of two carrier parents both passing the gene and therefore having a child affected by the syndrome is 25% with each pregnancy. The likelihood of having a child who is only a carrier of the gene is 50% with each pregnancy. The likelihood of a child receiving normal genes from both parents and being considered to be "genetically" normal is 25%. The risk for carrying the gene is equivalent for both males and females.
"Alström syndrome (AS) is a rare autosomal recessive disease characterized by multiorgan dysfunction. The key features are childhood obesity, blindness due to congenital retinal dystrophy, and sensorineural hearing loss. Associated endocrinologic features include hyperinsulinemia, early-onset type 2 diabetes, and hypertriglyceridemia."
Thus, AS shares several features with the common metabolic syndrome, namely obesity, hyperinsulinemia, and hypertriglyceridemia. Mutations in the ALMS1 gene have been found to be causative for AS with a total of 79 disease-causing mutations having been described." Prevalence estimates have ranged from 1 in 10,000 to fewer than 1 in 1,000,000 individuals in the general population.
Cockayne syndrome (CS), also called Neill-Dingwall syndrome, is a rare and fatal autosomal recessive neurodegenerative disorder characterized by growth failure, impaired development of the nervous system, abnormal sensitivity to sunlight (photosensitivity), eye disorders and premature aging. Failure to thrive and neurological disorders are criteria for diagnosis, while photosensitivity, hearing loss, eye abnormalities, and cavities are other very common features. Problems with any or all of the internal organs are possible. It is associated with a group of disorders called leukodystrophies, which are conditions characterized by degradation of neurological white matter. The underlying disorder is a defect in a DNA repair mechanism. Unlike other defects of DNA repair, patients with CS are not predisposed to cancer or infection. Cockayne syndrome is a rare but destructive disease usually resulting in death within the first or second decade of life. The mutation of specific genes in Cockayne syndrome is known, but the widespread effects and its relationship with DNA repair is yet to be well understood.
It is named after English physician Edward Alfred Cockayne (1880–1956) who first described it in 1936 and re-described in 1946. Neill-Dingwall syndrome was named after Mary M. Dingwall and Catherine A. Neill. These women described the case of two brothers with Cockayne syndrome and asserted it was the same disease described by Cockayne. In their article the women contributed to the symptoms of the disease through their discovery of calcifications in the brain. They also compared Cockayne syndrome to what is now known as Hutchinson–Gilford progeria syndrome (HGPS), then called progeria, due to the advanced aging that characterizes both disorders.