Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The following symptoms (signs) are consistent with complement deficiency in general:
Vaccinations for encapsulated organisms (e.g., "Neisseria meningitidis" and "Streptococcus pneumoniae") is crucial for preventing infections in complement deficiencies. Among the possible complications are the following:
- Deficiencies of the terminal complement components increases susceptibility to infections by Neisseria.
85–90% of IgA-deficient individuals are asymptomatic, although the reason for lack of symptoms is relatively unknown and continues to be a topic of interest and controversy. Some patients with IgA deficiency have a tendency to develop recurrent sinopulmonary infections, gastrointestinal infections and disorders, allergies, autoimmune conditions, and malignancies. These infections are generally mild and would not usually lead to an in-depth workup except when unusually frequent.
They may present with severe reactions including anaphylaxis to blood transfusions or intravenous immunoglobulin due to the presence of IgA in these blood products. Patients have an increased susceptibility to pneumonia and recurrent episodes of other respiratory infections and a higher risk of developing autoimmune diseases in middle age.
IgA deficiency and common variable immunodeficiency (CVID) feature similar B cell differentiation arrests, it does not present the same lymphocyte subpopulation abnormalities. IgA-deficient patients may progress to panhypogammaglobulinemia characteristic of CVID. Selective IgA and CVID are found in the same family.
Selective IgA deficiency is inherited and has been associated with differences in chromosomes 18, 14 and 6. Selective IgA deficiency is often inherited, but has been associated with some congenital intrauterine infections.
The precise symptoms of a primary immunodeficiency depend on the type of defect. Generally, the symptoms and signs that lead to the diagnosis of an immunodeficiency include recurrent or persistent infections or developmental delay as a result of infection. Particular organ problems (e.g. diseases involving the skin, heart, facial development and skeletal system) may be present in certain conditions. Others predispose to autoimmune disease, where the immune system attacks the body's own tissues, or tumours (sometimes specific forms of cancer, such as lymphoma). The nature of the infections, as well as the additional features, may provide clues as to the exact nature of the immune defect.
Symptoms may differ greatly, as apparently modifiers control to some degree the amount of FX that is produced. Some affected individuals have few or no symptoms while others may experience life-threatening bleeding. Typically this bleeding disorder manifests itself as a tendency to easy bruising, nose bleeding, heavy and prolonged menstruation and bleeding during pregnancy and childbirth, and excessive bleeding after dental or surgical interventions. Newborns may bleed in the head, from the umbilicus, or excessively after circumcision. Other bleeding can be encountered in muscles or joints, brain, gut, or urine
While in congenital disease symptoms may be present at birth or show up later, in patients with acquired FX deficiency symptoms typically show up in later life.
Protein C deficiency is a rare genetic trait that predisposes to thrombotic disease. It was first described in 1981. The disease belongs to a group of genetic disorders known as thrombophilias. Protein C deficiency is associated with an increased incidence of venous thromboembolism (relative risk 8–10), whereas no association with arterial thrombotic disease has been found.
Primary immunodeficiencies are disorders in which part of the body's immune system is missing or does not function normally. To be considered a "primary" immunodeficiency, the cause of the immune deficiency must not be secondary in nature (i.e., caused by other disease, drug treatment, or environmental exposure to toxins). Most primary immunodeficiencies are genetic disorders; the majority are diagnosed in children under the age of one, although milder forms may not be recognized until adulthood. While there are over 100 recognized PIDs, most are very rare. About 1 in 500 people in the United States are born with a primary immunodeficiency. Immune deficiencies can result in persistent or recurring infections, autoinflammatory disorders, tumors, and disorders of various organs. There are currently no cures for these conditions; treatment is palliative and consists of managing infections and boosting the immune system.
In addition to the symptoms associated with immunodeficiency, such as depletion of T-cells, decline of lymphocyte activity, and an abrupt proliferation of both benign and opportunistic infections — PNP-deficiency is often characterized by the development of autoimmune disorders. lupus erythematosus, autoimmune hemolytic anemia, and idiopathic thrombocytopenic purpura have been reported with PNP-deficiency.
Neurological symptoms, such as developmental decline, hypotonia, and mental retardation have also been reported.
Factor X deficiency (X as Roman numeral ten) is a bleeding disorder characterized by a lack in the production of factor X (FX), an enzyme protein that causes blood to clot in the coagulation cascade. Produced in the liver FX when activated cleaves prothrombin to generate thrombin in the intrinsic pathway of coagulation. This process is vitamin K dependent and enhanced by activated factor V.
The condition may be inherited or, more commonly, acquired.
IgG deficiency (Selective deficiency of immunoglobulin G) is a form of dysgammaglobulinemia where the proportional levels of the IgG isotype are reduced relative to other immunoglobulin isotypes. IgG deficiency is often found in children as transient hypogammaglobulinemia of infancy (THI), which may occur with or without additional decreases in IgA or IgM.
IgG has four subclasses: IgG, IgG, IgG, and IgG. It is possible to have either a global IgG deficiency, or a deficiency of one or more specific subclasses of IgG. The main clinically relevant form of IgG deficiency is IgG. IgG deficiency is not usually encountered without other concomitant immunoglobulin deficiencies, and IgG deficiency is very common but usually asymptomatic.
IgG1 is present in the bloodstream at a percentage of about 60-70%, IgG2-20-30%, IgG3 about 5-8 %, and IgG4 1-3 %. IgG subclass deficiencies affect only IgG subclasses (usually IgG2 or IgG3), with normal total IgG and IgM immunoglobulins and other components of the immune system being at normal levels. These deficiencies can affect only one subclass or involve an association of two subclasses, such as IgG2 and IgG4. IgG deficiencies are usually not diagnosed until the age of 10. Some of the IgG levels in the blood are undetectable and have a low percentage such as IgG4, which makes it hard to dertermine if a deficiency is actually present. IgG subclass deficiencies are sometimes correlated with bad responses to pneumoccal polyscaccharides, especially IgG2 and or IgG4 deficiency. Some of these deficiencies are also involved with pancreatitis and have been linked to IgG4 levels.
Factor XII deficiency (also Hageman factor deficiency) is a deficiency in the production of factor XII (FXII), a plasma glycoprotein and clotting factor that participates in the coagulation cascade and activates factor XI. FXII appears to be not essential for blood clotting, as individuals with this condition are usually asymptomatic and form blood clots in vivo. FXII deficiency tends to be identified during presurgical laboratory screening for bleeding disorders.
The condition can be inherited or acquired.
While it is indicated that people with FXII deficiency are generally asymptomatic, studies in women with recurrent miscarriages suggest an association with FXII deficiency.
The condition is of importance in the differential diagnosis to other bleeding disorders, specifically the hemophilias: hemophilia A with a deficiency in factor VIII or antihemophilic globulin, hemophilia B with a deficiency in factor IX (Christmas disease), and hemophilia C with a deficiency in factor XI. Other rare forms of bleeding disorders are also in the differential diagnosis.
There is concern that individuals with FXII deficiency are more prone to thrombophilic disease, however, this is at variance with a long term study from Switzerland.
Tetrahydrobiopterin deficiency (THBD, BHD), also called THB or BH deficiency, is a rare metabolic disorder that increases the blood levels of phenylalanine. Phenylalanine is an amino acid obtained through the diet. It is found in all proteins and in some artificial sweeteners. If tetrahydrobiopterin deficiency is not treated, excess phenylalanine can build up to harmful levels in the body, causing intellectual disability and other serious health problems.
High levels of phenylalanine are present from infancy in people with untreated tetrahydrobiopterin (THB, BH) deficiency. The resulting signs and symptoms range from mild to severe. Mild complications may include temporary low muscle tone. Severe complications include intellectual disability, movement disorders, difficulty swallowing, seizures, behavioral problems, progressive problems with development, and an inability to control body temperature.
It was first characterized in 1975.
Myeloperoxidase deficiency is an autosomal recessive genetic disorder featuring deficiency, either in quantity or of function, of myeloperoxidase, an enzyme found in certain phagocytic immune cells, especially polymorphonuclear leukocytes.
It can appear similar to chronic granulomatous disease on some screening tests.
This defect leads to a multi-systemic disorder of the connective tissue, muscles, central nervous system (CNS), and cardiovascular system. Homocystinuria represents a group of hereditary metabolic disorders characterized by an accumulation of the amino acid homocysteine in the serum and an increased excretion of homocysteine in the urine. Infants appear to be normal and early symptoms, if any are present, are vague.
Signs and symptoms of homocystinuria that may be seen include the following:
Signs/symptoms of humoral immune deficiency depend on the cause, but generally include signs of infection such as:
- Sinusitis
- Sepsis
- Skin infection
- Pneumonia
Although MPO deficiency classically presents with immune deficiency (especially candida albicans infections), the majority of individuals with MPO deficiency show no signs of immunodeficiency.
The lack of severe symptoms suggest that role of myeloperoxidase in the immune response must be redundant to other mechanisms of intracellular killing of phagocytosed bacteria.
Patients with MPO deficiency have a respiratory burst with a normal nitro blue tetrazolium (NBT) test because they still have NADPH oxidase activity, but do not form bleach due to their lack of myeloperoxidase activity. This is in contrast to chronic granulomatous disease, in which the NBT test is 'negative' due to the lack of NADPH oxidase activity (positive test result means neutrophils turn blue, negative means nitroblue tetrazolium remains yellow).
Patients with MPO deficiency are at increased risk for systemic candidiasis.
Purine nucleoside phosphorylase deficiency, often called PNP-deficiency, is a rare autosomal recessive metabolic disorder which results in immunodeficiency.
Humoral immune deficiencies are conditions which cause impairment of humoral immunity, which can lead to immunodeficiency. It can be mediated by insufficient number or function of B cells, the plasma cells they differentiate into, or the antibody secreted by the plasma cells. The most common such immunodeficiency is inherited selective IgA deficiency, occurring between 1 in 100 and 1 in 1000 persons, depending on population.They are associated with increased vulnerability to infection, but can be difficult to detect (or asymptomatic) in the absence of infection.They can be associated with increased risk of gastric cancer.
Protein S deficiency is a disorder associated with increased risk of venous thrombosis. Protein S, a vitamin K-dependent physiological anticoagulant, acts as a nonenzymatic cofactor to activate protein C in the degradation of factor Va and factor VIIIa. Decreased (antigen) levels or impaired function of protein S leads to decreased degradation of factor Va and factor VIIIa and an increased propensity to venous thrombosis. Protein S circulates in human plasma in two forms: approximately 60 percent is bound to complement component C4b β-chain while the remaining 40 percent is free, only free protein S has activated protein C cofactor activity
Biotinidase deficiency is an autosomal recessive metabolic disorder in which biotin is not released from proteins in the diet during digestion or from normal protein turnover in the cell. This situation results in biotin deficiency.
Biotin, also called vitamin B, is an important water-soluble nutrient that aids in the metabolism of fats, carbohydrates, and proteins. Biotin deficiency can result in behavioral disorders, lack of coordination, learning disabilities and seizures. Biotin supplementation can alleviate and sometimes totally stop such symptoms.
PASLI disease is a rare genetic disorder of the immune system. PASLI stands for “p110 delta activating mutation causing senescent T cells, lymphadenopathy, and immunodeficiency.” The immunodeficiency manifests as recurrent infections usually starting in childhood. These include bacterial infections of the respiratory system and chronic viremia due to Epstein-Barr virus (EBV) and/or cytomegalovirus (CMV). Individuals with PASLI disease also have an increased risk of EBV-associated lymphoma. Investigators Carrie Lucas, Michael Lenardo, and Gulbu Uzel at the National Institute of Allergy and Infectious Diseases at the U.S. National Institutes of Health and Sergey Nejentsev at the University of Cambridge, UK simultaneously described a mutation causing this condition which they called Activated PI3K Delta Syndrome (APDS).
Signs and symptoms of a biotinidase deficiency can appear several days after birth. These include seizures, hypotonia and muscle/limb weakness, ataxia, paresis, hearing loss, optic atrophy, skin rashes (including seborrheic dermatitis and psoriasis), and alopecia. If left untreated, the disorder can rapidly lead to coma and death.
Biotinidase deficiency can also appear later in life. This is referred to as "late-onset" biotinidase deficiency. The symptoms are similar, but perhaps more mild, because if an individual survives the neonatal period they likely have some residual activity of biotin-related enzymes. Studies have noted individuals who were asymptomatic until adolescence or early adulthood. One study pointed out that untreated individuals may not show symptoms until age 21. Furthermore, in rare cases, even individuals with profound deficiencies of biotinidase can be asymptomatic.
Symptom severity is predictably correlated with the severity of the enzyme defect. Profound biotinidase deficiency refers to situations where enzyme activity is 10% or less. Individuals with partial biotinidase deficiency may have enzyme activity of 10-30%.
Functionally, there is no significant difference between dietary biotin deficiency and genetic loss of biotin-related enzyme activity. In both cases, supplementation with biotin can often restore normal metabolic function and proper catabolism of leucine and isoleucine.
The symptoms of biotinidase deficiency (and dietary deficiency of biotin) can be quite severe. A 2004 case study from Metametrix detailed the effects of biotin deficiency, including aggression, cognitive delay, and reduced immune function.
Clinically, PASLI disease is characterized by recurrent sinopulmonary infections that can lead to progressive airway damage. Patients also suffer from lymphoproliferation (large lymph nodes and spleen), chronic viremia due to EBV or CMV, distinctive lymphoid nodules at mucosal surfaces, autoimmune cytopenias, and EBV-driven B cell lymphoma. Importantly, the clinical presentations and disease courses are variable with some individuals severely affected, whereas others show little manifestation of disease. This “variable expressivity,” even within the same family, can be striking and may be explained by differences in lifestyle, exposure to pathogens, treatment efficacy, or other genetic modifiers.