Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A brainstem stroke syndrome is a condition involving a stroke of the brainstem. Because of their location, they often involve impairment both of the cranial nuclei and of the long tracts.
A person may have vertigo, dizziness and severe imbalance without the hallmark of most strokes – weakness on one side of the body. The symptoms of vertigo, dizziness or imbalance usually occur together; dizziness alone is not a sign of stroke. Brainstem stroke can also cause diplopia, slurred speech and decreased level of consciousness. A more serious outcome is locked-in syndrome.
Symptoms often include:
- Seizures, especially in newborns
- Keeping one hand in a fist position, especially in infants
- Worsening or sudden headaches
- Sudden difficulty speaking, slurring of words or trouble understanding speech
- Hemiparesis, or a weakness on one side of the body
- Sudden loss of vision or abnormal eye movements
- Sudden loss of balance or trouble walking
The prognosis for pediatric stroke survivors varies. The following are some common outcomes:
- Cerebral Palsy (often Hemiplegic Cerebral Palsy/Hemiplegia)
- Epilepsy
- Vision Loss
- Hearing Loss
A Total Anterior Circulation Infarct (TACI) is a type of cerebral infarction affecting the entire anterior circulation supplying one side of the brain.
Total Anterior Circulation Stroke Syndrome (TACS) refers to the symptoms of a patient who clinically appears to have suffered from a total anterior circulation infarct, but who has not yet had any diagnostic imaging (e.g. CT Scan) to confirm the diagnosis.
It is diagnosed when it causes all 3 of the following symptoms:
- Higher dysfunction
- Dysphasia
- Visuospatial disturbances
- Decreased level of consciousness
- Homonymous hemianopia
- Motor and Sensory Defects (≥2/3 of face, arm, leg)
For more information, see stroke.
Partial Anterior Circulation Infarct (PACI) is a type of cerebral infarction affecting part of the anterior circulation supplying one side of the brain.
Partial Anterior Circulation Stroke Syndrome (PACS) refers to the symptoms of a patient who clinically appears to have suffered from a partial anterior circulation infarct, but who has not yet had any diagnostic imaging (e.g. CT Scan) to confirm the diagnosis.
It is diagnosed by any one of the following
- 2 out of 3 features of
- Higher dysfunction
- Dysphasia
- Visuospatial disturbances
- Homonymous hemianopia
- Motor and Sensory Defects (>2/3 of face, arm, leg)
- Higher dysfunction alone
- Partial Motor or Sensory Defect
If all of the above symptoms are present, a Total Anterior Circulation Infarct is more likely.
For more information, see stroke.
Loss of consciousness, headache, and vomiting usually occur more often in hemorrhagic stroke than in thrombosis because of the increased intracranial pressure from the leaking blood compressing the brain.
If symptoms are maximal at onset, the cause is more likely to be a subarachnoid hemorrhage or an embolic stroke.
If the area of the brain affected contains one of the three prominent central nervous system pathways—the spinothalamic tract, corticospinal tract, and the posterior column–medial lemniscus pathway, symptoms may include:
- hemiplegia and muscle weakness of the face
- numbness
- reduction in sensory or vibratory sensation
- initial flaccidity (reduced muscle tone), replaced by spasticity (increased muscle tone), excessive reflexes, and obligatory synergies.
In most cases, the symptoms affect only one side of the body (unilateral). Depending on the part of the brain affected, the defect in the brain is "usually" on the opposite side of the body. However, since these pathways also travel in the spinal cord and any lesion there can also produce these symptoms, the presence of any one of these symptoms does not necessarily indicate a stroke.In addition to the above CNS pathways, the "brainstem" gives rise to most of the twelve cranial nerves. A brainstem stroke affecting the brainstem and brain, therefore, can produce symptoms relating to deficits in these cranial nerves:
- altered smell, taste, hearing, or vision (total or partial)
- drooping of eyelid (ptosis) and weakness of ocular muscles
- decreased reflexes: gag, swallow, pupil reactivity to light
- decreased sensation and muscle weakness of the face
- balance problems and nystagmus
- altered breathing and heart rate
- weakness in sternocleidomastoid muscle with inability to turn head to one side
- weakness in tongue (inability to stick out the tongue or move it from side to side)
If the "cerebral cortex" is involved, the CNS pathways can again be affected, but also can produce the following symptoms:
- aphasia (difficulty with verbal expression, auditory comprehension, reading and writing; Broca's or Wernicke's area typically involved)
- dysarthria (motor speech disorder resulting from neurological injury)
- apraxia (altered voluntary movements)
- visual field defect
- memory deficits (involvement of temporal lobe)
- hemineglect (involvement of parietal lobe)
- disorganized thinking, confusion, hypersexual gestures (with involvement of frontal lobe)
- lack of insight of his or her, usually stroke-related, disability
If the "cerebellum" is involved, ataxia might be present and this includes:
- altered walking gait
- altered movement coordination
- vertigo and or disequilibrium
Each of the 5 classical lacunar syndromes has a relatively distinct symptom complex. Symptoms may occur suddenly, progressively, or in a fluctuating (e.g., the capsular warning syndrome) manner. Occasionally, cortical infarcts and intracranial hemorrhages can mimic lacunar infarcts, but true cortical infarct signs (aphasia, visuospatial neglect, gaze deviation, and visual field defects) are always absent. The 5 classic syndromes are as follows:
A silent lacunar infarction (SLI) is one type of silent stroke which usually shows no identifiable outward symptoms thus the term "silent". Individuals who suffer a SLI are often completely unaware they have suffered a stroke. This type of stroke often causes lesions in the surrounding brain tissue that are visibly detected via neuroimaging techniques such as MRI and computerized axial tomography (CT scan). Silent strokes, including silent lacunar infarctions, have been shown to be much more common than previously thought, with an estimated prevalence rate of eleven million per year in the United States. Approximately 10% of these silent strokes are silent lacunar infarctions. While dubbed "silent" due to the immediate lack of classic stroke symptoms, SLIs can cause damage to the surrounding brain tissue (lesions) and can affect various aspects of a persons mood, personality, and cognitive functioning. A SLI or any type of silent stroke places an individual at greater risk for future major stroke.
Signs and symptoms of TIA are widely variable and can mimic other neurologic conditions, making the clinical context and physical exam crucial in ruling in or out the diagnosis. The most common presenting symptoms of TIA are focal neurologic deficits, which can include, but are not limited to :
- Amaurosis fugax (painless, temporary loss of vision)
- One-sided facial droop
- One-sided motor weakness
- Diplopia (double vision)
- Problems with balance and spatial orientation
A detailed neurologic exam, including a thorough cranial nerve exam, is important to identify these findings and to differentiate them from mimickers of TIA. Symptoms such as unilateral weakness, amaurosis fugax, and double vision have higher odds of representing TIA compared to memory loss, headache, and blurred vision. Below is a table of symptoms at presentation, and what percentage of the time they are seen in TIAs versus conditions that mimic TIA. In general, focal deficits make TIA more likely, but the absence of focal findings do not exclude the diagnosis and further evaluation may be warranted if clinical suspicion for TIA is high (see “Diagnosis” section below).
A Posterior Circulation Infarct (POCI) is a type of cerebral infarction affecting the posterior circulation supplying one side of the brain.
Posterior Circulation Stroke Syndrome (POCS) refers to the symptoms of a patient who clinically appears to have had a posterior circulation infarct, but who has not yet had any diagnostic imaging (e.g. CT Scan) to confirm the diagnosis.
It can cause the following symptoms:
- Cranial nerve palsy AND contralateral motor/sensory defect
- motor or sensory defect
- Eye movement problems (e.g.nystagmus)
- Cerebellar dysfunction
- Isolated homonymous hemianopia
It has also been associated with deafness.
A transient ischemic attack (TIA) is a brief episode of neurological dysfunction caused by loss of blood flow (ischemia) in the brain, spinal cord, or retina, without tissue death (infarction). TIAs have the same underlying mechanism as ischemic strokes. Both are caused by a disruption in blood flow to the brain, or cerebral blood flow (CBF). The definition of TIA was classically based on duration of neurological symptoms. The current widely-accepted definition is called "tissue-based" because it is based on imaging, not time. The American Heart Association and the American Stroke Association (AHA/ASA) now define TIA as a brief episode of neurological dysfunction with a vascular cause, with clinical symptoms typically lasting less than one hour, and without evidence of infarction on imaging.
TIA causes the same symptoms associated with stroke, such as paralysis, weakness, or numbness on one side of the body. Symptoms occur on the opposite side of the body from the affected hemisphere of the brain (contralateral hemiparesis or hemianesthesia). A TIA may cause sudden dimming or loss of vision (amaurosis fugax), difficulty speaking or understanding language (aphasia), slurred speech (dysarthria), and confusion (altered mental status).
TIA and ischemic stroke share a common cause. Both result from a disruption in blood flow to the central nervous system. In ischemic stroke, symptoms generally persist beyond 7 days. In TIA, symptoms typically resolve within 1 hour. The occurrence of a TIA is a risk factor for eventually having a stroke. Both are associated with increased risk of death or disability. Recognition that a TIA has occurred is an opportunity to start treatment, including medications and lifestyle changes, to prevent a stroke.
While a TIA must by definition be associated with symptoms, a stroke may be symptomatic or silent. In silent stroke, also known as silent cerebral infarct (SCI), there is permanent infarction present on imaging, but there are no immediately observable symptoms. An SCI often occurs before or after a TIA or major stroke.
The most common presentation of cerebrovascular diseases is an acute stroke, which occurs when blood supply to the brain is compromised. Symptoms of stroke are usually rapid in onset, and may include weakness of one side of the face or body, numbness on one side of the face or body, inability to produce or understand speech, vision changes, and balance difficulties. Hemorrhagic strokes can present with a very severe, sudden headache associated with vomiting, neck stiffness, and decreased consciousness. Symptoms vary depending on the location and the size of the area of involvement of the stroke. Edema, or swelling, of the brain may occur which increases intracranial pressure and may result in brain herniation. A stroke may result in coma or death if it involves key areas of the brain.
Other symptoms of cerebrovascular disease include migraines, seizures, epilepsy, or cognitive decline. However, cerebrovascular disease may go undetected for years until an acute stroke occurs. In addition, patients with some rare congenital cerebrovascular diseases may begin to have these symptoms in childhood.
This syndrome is characterized by sensory deficits that affect the trunk and extremities contralaterally, and sensory deficits of the face and cranial nerves ipsilaterally. Specifically a loss of pain and temperature sensation if the spinothalamic tract is impacted. The cross body finding is the chief symptom from which a diagnosis can be made.
Patients often have difficulty walking or maintaining balance, or difference in temperature of an object based on which side of the body the object of varying temperature is touching. Some patients may walk with a slant or suffer form skew deviation and illusions of room tilt. The nystagmus is commonly associated with vertigo spells. These vertigo spells can result in falling, caused from the involvement of the region of Deiters’ nucleus.
Common symptoms with lateral medullary syndrome may include difficulty swallowing, or dysphagia. This can be caused by the involvement of the nucleus ambiguous, as it supplies the vagus and glossopharyngeal nerves. Slurred speech (dysarthria), and disordered vocal quality (dysphonia) are also common. The damage to the cerebellum or the inferior cerebellar peduncle can cause ataxia. Damage to the hypothalamospinal fibers disrupts sympathetic nervous system relay and gives symptoms that are similar to the symptoms caused by Horner syndrome.
Palatal myoclonus, the twitching of the muscles of the mouth, may be observed due to disruption of the central tegmental tract. Other symptoms include: hoarseness, nausea, vomiting, a decrease in sweating, problems with body temperature sensation, dizziness, difficulty walking, and difficulty maintaining balance. Lateral medullary syndrome can also cause bradycardia, a slow heart rate, and increases or decreases in the patients average blood pressure.
The outlook for someone with lateral medullary syndrome depends upon the size and location of the area of the brain stem damaged by the stroke. Some individuals may see a decrease in their symptoms within weeks or months. Others may be left with significant neurological disabilities for years after the initial symptoms appeared. However, more than 85% of patients have seen minimal symptoms present at six months from the time of the originatl stroke, and have been able to independently accomplish average daily within a year.
Locked-in syndrome usually results from quadriplegia and the inability to speak in otherwise cognitively intact individuals. Those with locked-in syndrome may be able to communicate with others through coded messages by blinking or moving their eyes, which are often not affected by the paralysis. The symptoms are similar to those of sleep paralysis. Patients who have locked-in syndrome are conscious and aware, with no loss of cognitive function. They can sometimes retain proprioception and sensation throughout their bodies. Some patients may have the ability to move certain facial muscles, and most often some or all of the extraocular muscles. Individuals with the syndrome lack coordination between breathing and voice. This prevents them producing voluntary sounds, though the vocal cords are not paralysed.
Dejerine–Roussy syndrome is most commonly preceded by numbness in the affected side. In these cases, numbness is replaced by burning and tingling sensations, widely varying in degree of severity across all cases. The majority of those reported are cases in which the symptoms are severe and debilitating. Burning and tingling can also be accompanied by hypersensitivity, usually in the form of dysaesthesia or allodynia. Less commonly, some patients develop severe ongoing pain with little or no stimuli.
Allodynia is pain from a stimulus that would normally not cause pain. For example, there is a patient who experiences unrelenting pain when a breeze touches his skin. Most patients experiencing allodynia, experience pain with touch and pressure, however some can be hypersensitive to temperature.
Dysaesthesia is defined as pain due to thalamic lesioning. This form of neuropathic pain can be any combination of itching, tingling, burning, or searing experienced spontaneously or from stimuli.
Allodynia and dysaesthesia replace numbness between one week and a few months after a thalamic stroke. In general, once the development of pain has stopped, the type and severity of pain will be unchanging and if untreated, persist throughout life. Consequentially, many will undergo some form of pain treatment and adjust to their new lives as best they can.
Pain associated with Dejerine–Roussy syndrome is sometimes coupled with anosognosia or somatoparaphrenia which causes a patient having undergone a right-parietal, or right-sided stroke to deny any paralysis of the left side when indeed there is, or deny the paralyzed limb(s) belong to them. Although debatable, these symptoms are rare and considered part of a "thalamic phenomenon", and are not normally considered a characteristic of Dejerine–Roussy syndrome.
Posterior cerebral artery syndrome is a condition whereby the blood supply from the posterior cerebral artery (PCA) is restricted, leading to a reduction of the function of the portions of the brain supplied by that vessel: the occipital lobe, the inferomedial temporal lobe, a large portion of the thalamus, and the upper brainstem and midbrain.
This event restricts the flow of blood to the brain in a near-immediate fashion. The blood hammer is analogous to the water hammer in hydrology and it consists of a sudden increase of the upstream blood pressure in a blood vessel when the bloodstream is abruptly blocked by vessel obstruction. Complete understanding of the relationship between mechanical parameters in vascular occlusions is a critical issue, which can play an important role in the future diagnosis, understanding and treatment of vascular diseases.
Depending upon the location and severity of the occlusion, signs and symptoms may vary within the population affected with PCA syndrome. Blockages of the proximal portion of the vessel produce only minor deficits due to the collateral blood flow from the opposite hemisphere via the posterior communicating artery. In contrast, distal occlusions result in more serious complications. Visual deficits, such as agnosia, prosopagnosia or cortical blindness (with bilateral infarcts) may be a product of ischemic damage to occipital lobe. Occlusions of the branches of the PCA that supply the thalamus can result in central post-stroke pain and lesions to the subthalamic branches can produce “a wide variety of deficits”.
Left posterior cerebral artery syndrome presents alexia without agraphia; the lesion is in the splenium of the corpus callosum.
Peripheral Territory Lesions
1. Contralateral homonymous hemianopsia
2. cortical blindness with bilateral involvement of the occipital lobe branches
3. visual agnosia
4. prosopagnosia
5. dyslexia, Anomic aphasia, color naming and discrimination problems
6. memory defect
7. topographic disorientation
Central Territory Lesions
1. central post-stroke (thalamic) pain: spontaneous pain, dysesthesias and sensory impairments
2. involuntary movements: chorea, intention tremor, hemiballismus
3. contralateral hemiplegia
4. Weber’s syndrome: occulomotor nerve palsy
5. Bálint's syndrome: loss of voluntary eye movements optic ataxia, asimultagnosia (inability to understand visual objects)
A neonatal stroke is one that occurs in the first 28 days of life, though a late presentation is not uncommon (as contrasted with perinatal stroke, which occurs from 28 weeks gestation through the first 7 days of life). 80% of neonatal strokes are ischemic, and their presentation is varied, making diagnosis very difficult. The most common manifestation of neonatal strokes are seizures, but other manifestations include lethargy, hypotonia, apnoea, and hemiparesis. Seizures can be focal or generalized in nature. Stroke accounts for about 10% of seizures in term neonates.
Brain death is the complete loss of brain function (including involuntary activity necessary to sustain life). It differs from persistent vegetative state, in which the person is alive and some autonomic functions remain.
Brain death is used as an indicator of legal death in many jurisdictions, but it is defined inconsistently. Various parts of the brain may keep functioning when others do not anymore, and the term "brain death" has been used to refer to various combinations. For example, although a major medical dictionary says that "brain death" is synonymous with "cerebral death" (death of the cerebrum), the US National Library of Medicine Medical Subject Headings (MeSH) system defines brain death as including the brainstem. The distinctions can be important because, for example, in someone with a dead cerebrum but a living brainstem, the heartbeat and ventilation can continue unaided, whereas in whole-brain death (which includes brain stem death), only life support equipment would keep those functions going. Patients classified as brain-dead can have their organs surgically removed for organ donation.
Dejerine–Roussy syndrome or thalamic pain syndrome is a condition developed after a thalamic stroke, a stroke causing damage to the thalamus. Ischemic strokes and hemorrhagic strokes can cause lesioning in the thalamus. The lesions, usually present in one hemisphere of the brain, most often cause an initial lack of sensation and tingling in the opposite side of the body. Weeks to months later, numbness can develop into severe and chronic pain that is not proportional to an environmental stimulus, called dysesthesia or allodynia. As initial stroke symptoms (numbness and tingling) dissipate, an imbalance in sensation causes these later syndromes, characterizing Dejerine–Roussy syndrome. Although some treatments exist, they are often expensive, chemically based, invasive, and only treat patients for some time before they need more treatment, called "refractory treatment".
A silent stroke is a stroke that does not have any outward symptoms associated with stroke, and the patient is typically unaware they have suffered a stroke. Despite not causing identifiable symptoms a silent stroke still causes damage to the brain, and places the patient at increased risk for both transient ischemic attack and major stroke in the future. In a broad study in 1998, more than 11 million people were estimated to have experienced a stroke in the United States. Approximately 770,000 of these strokes were symptomatic and 11 million were first-ever silent MRI infarcts or hemorrhages. Silent strokes typically cause lesions which are detected via the use of neuroimaging such as MRI. The risk of silent stroke increases with age but may also affect younger adults. Women appear to be at increased risk for silent stroke, with hypertension and current cigarette smoking being amongst the predisposing factors.
These types of strokes include lacunar and other ischemic strokes and minor hemorrhages. They may also include leukoaraiosis (changes in the white matter of the brain): the white matter is more susceptible to vascular blockage due to reduced amount of blood vessels as compared to the cerebral cortex. These strokes are termed "silent" because they typically affect "silent" regions of the brain that do not cause a noticeable change in an afflicted person’s motor functions such as contralateral paralysis, slurred speech, pain, or an alteration in the sense of touch. A silent stroke typically affects regions of the brain associated with various thought processes, mood regulation and cognitive functions and is a leading cause of vascular cognitive impairment and may also lead to a loss of urinary bladder control.
In the Cardiovascular Health Study, a population study conducted among 3,660 adults over the age of 65. 31% showed evidence of silent stroke in neuroimaging studies utilizing MRI. These individuals were unaware they had suffered a stroke. It is estimated that silent strokes are five times more common than symptomatic stroke.
A silent stroke differs from a transient ischemic attack (TIA). In TIA symptoms of stroke are exhibited which may last from a few minutes to 24 hours before resolving. A TIA is a risk factor for having a major stroke and subsequent silent strokes in the future.
Stroke presentations which are particularly suggestive of a watershed stroke include bilateral visual loss, stupor, and weakness of the proximal limbs, sparing the face, hands and feet.
It is very important for family members and health care professionals to be aware of natural movements also known as Lazarus sign or Lazarus reflex that can occur on a brain-dead person whose organs have been kept functioning by life support. The living cells that can cause these movements are not living cells from the brain or brain stem, these cells come from the spinal cord. Sometimes these body movements can cause false hope for the family members.
A brain-dead individual has no clinical evidence of brain function upon physical examination. This includes no response to pain and no cranial nerve reflexes. Reflexes include pupillary response (fixed pupils), oculocephalic reflex, corneal reflex, no response to the caloric reflex test, and no spontaneous respirations.
It is important to distinguish between brain death and states that may be difficult to differentiate from brain death, (such as barbiturate overdose, alcohol intoxication, sedative overdose, hypothermia, hypoglycemia, coma, and chronic vegetative states). Some comatose patients can recover to pre-coma or near pre-coma level of functioning, and some patients with severe irreversible neurological dysfunction will nonetheless retain some lower brain functions, such as spontaneous respiration, despite the losses of both cortex and brain stem functionality. Such is the case with anencephaly.
Note that brain electrical activity can stop completely, or drop to such a low level as to be undetectable with most equipment. An EEG will therefore be flat, though this is sometimes also observed during deep anesthesia or cardiac arrest. Although in the United States a flat EEG test is not required to certify death, it is considered to have confirmatory value. In the UK it is not considered to be of value because any continuing activity it might reveal in parts of the brain above the brain stem is held to be irrelevant to the diagnosis of death on the Code of Practice criteria.
The diagnosis of brain death needs to be rigorous, in order to be certain that the condition is irreversible. Legal criteria vary, but in general they require neurological examinations by two independent physicians. The exams must show complete and irreversible absence of brain function (brain stem function in UK), and may include two isoelectric (flat-line) EEGs 24 hours apart (less in other countries where it is accepted that if the cause of the dysfunction is a clear physical trauma there is no need to wait that long to establish irreversibility). The patient should have a normal temperature and be free of drugs that can suppress brain activity if the diagnosis is to be made on EEG criteria.
Also, a radionuclide cerebral blood flow scan that shows complete absence of intracranial blood flow must be considered with other exams – temporary swelling of the brain, particularly within the first 72 hours, can lead to a false positive test on a patient that may recover with more time.
CT angiography is neither required nor sufficient test to make the diagnosis.