Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Cerebral hypoxia can be caused by any event that severely interferes with the brain's ability to receive or process oxygen. This event may be internal or external to the body. Mild and moderate forms of cerebral hypoxia may be caused by various diseases that interfere with breathing and blood oxygenation. Severe asthma and various sorts of anemia can cause some degree of diffuse cerebral hypoxia. Other causes include status epilepticus, work in nitrogen-rich environments, ascent from a deep-water dive, flying at high altitudes in an unpressurized cabin without supplemental oxygen, and intense exercise at high altitudes prior to acclimatization.
Severe cerebral hypoxia and anoxia is usually caused by traumatic events such as choking, drowning, strangulation, smoke inhalation, drug overdoses, crushing of the trachea, status asthmaticus, and shock. It is also recreationally self-induced in the fainting game and in erotic asphyxiation.
- Transient ischemic attack (TIA), is often referred to as a "mini-stroke". The American Heart Association and American Stroke Association (AHA/ASA) refined the definition of transient ischemic attack. TIA is now defined as a transient episode of neurologic dysfunction caused by focal brain, spinal cord, or retinal ischemia, without acute infarction. The symptoms of a TIA can resolve within a few minutes, unlike a stroke. TIAs share the same underlying etiology as strokes; a disruption of cerebral blood flow. TIAs and strokes present with the same symptoms such as contralateral paralysis (opposite side of body from affected brain hemisphere), or sudden weakness or numbness. A TIA may cause sudden dimming or loss of vision, aphasia, slurred speech, and mental confusion. The symptoms of a TIA typically resolve within 24 hours, unlike a stroke. Brain injury may still occur in a TIA lasting only a few minutes. Having a TIA is a risk factor for eventually having a stroke.
- Silent stroke is a stroke which does not have any outward symptoms, and the patient is typically unaware they have suffered a stroke. Despite its lack of identifiable symptoms, a silent stroke still causes brain damage and places the patient at increased risk for a major stroke in the future. In a broad study in 1998, more than 11 million people were estimated to have experienced a stroke in the United States. Approximately 770,000 of these strokes were symptomatic and 11 million were first-ever silent MRI infarcts or hemorrhages. Silent strokes typically cause lesions which are detected via the use of neuroimaging such as fMRI. The risk of silent stroke increases with age but may also affect younger adults. Women appear to be at increased risk for silent stroke, with hypertension and current cigarette smoking being predisposing factors.
The brain requires approximately 3.3 ml of oxygen per 100 g of brain tissue per minute. Initially the body responds to lowered blood oxygen by redirecting blood to the brain and increasing cerebral blood flow. Blood flow may increase up to twice the normal flow but no more. If the increased blood flow is sufficient to supply the brain's oxygen needs then no symptoms will result.
However, if blood flow cannot be increased or if doubled blood flow does not correct the problem, symptoms of cerebral hypoxia will begin to appear. Mild symptoms include difficulties with complex learning tasks and reductions in short-term memory. If oxygen deprivation continues, cognitive disturbances, and decreased motor control will result. The skin may also appear bluish (cyanosis) and heart rate increases. Continued oxygen deprivation results in fainting, long-term loss of consciousness, coma, seizures, cessation of brain stem reflexes, and brain death.
Objective measurements of the severity of cerebral hypoxia depend on the cause. Blood oxygen saturation may be used for hypoxic hypoxia, but is generally meaningless in other forms of hypoxia. In hypoxic hypoxia 95–100% saturation is considered normal; 91–94% is considered mild and 86–90% moderate. Anything below 86% is considered severe.
It should be noted that cerebral hypoxia refers to oxygen levels in brain tissue, not blood. Blood oxygenation will usually appear normal in cases of hypemic, ischemic, and hystoxic cerebral hypoxia. Even in hypoxic hypoxia blood measures are only an approximate guide; the oxygen level in the brain tissue will depend on how the body deals with the reduced oxygen content of the blood.
The symptoms of brain ischemia reflect the anatomical region undergoing blood and oxygen deprivation. Ischemia within the arteries branching from the internal carotid artery may result in symptoms such as blindness in one eye, weakness in one arm or leg, or weakness in one entire side of the body. Ischemia within the arteries branching from the vertebral arteries in the back of the brain may result in symptoms such as dizziness, vertigo, double vision, or weakness on both sides of the body . Other symptoms include difficulty speaking, slurred speech, and the loss of coordination. The symptoms of brain ischemia range from mild to severe. Further, symptoms can last from a few seconds to a few minutes or extended periods of time. If the brain becomes damaged irreversibly and infarction occurs, the symptoms may be permanent.
Similar to cerebral hypoxia, severe or prolonged brain ischemia will result in unconsciousness, brain damage or death, mediated by the ischemic cascade.
Multiple cerebral ischemic events may lead to subcortical ischemic depression, also known as vascular depression. This condition is most commonly seen in elderly depressed patients. Late onset depression is increasingly seen as a distinct sub-type of depression, and can be detected with an MRI.
A neonatal stroke is one that occurs in the first 28 days of life, though a late presentation is not uncommon (as contrasted with perinatal stroke, which occurs from 28 weeks gestation through the first 7 days of life). 80% of neonatal strokes are ischemic, and their presentation is varied, making diagnosis very difficult. The most common manifestation of neonatal strokes are seizures, but other manifestations include lethargy, hypotonia, apnoea, and hemiparesis. Seizures can be focal or generalized in nature. Stroke accounts for about 10% of seizures in term neonates.
Global brain ischemia occurs when blood flow to the brain is halted or drastically reduced. This is commonly caused by cardiac arrest. If sufficient circulation is restored within a short period of time, symptoms may be transient. However, if a significant amount of time passes before restoration, brain damage may be permanent. While reperfusion may be essential to protecting as much brain tissue as possible, it may also lead to reperfusion injury. Reperfusion injury is classified as the damage that ensues after restoration of blood supply to ischemic tissue.
Certain changes in morphology are associated with cerebral edema: the brain becomes soft and smooth and overfills the cranial vault, gyri (ridges) become flattened, sulci (grooves) become narrowed, and ventricular cavities become compressed.
Symptoms include nausea, vomiting, blurred vision, faintness, and in severe cases, seizures and coma. If brain herniation occurs, respiratory symptoms or respiratory arrest can also occur due to compression of the respiratory centers in the pons and medulla oblongata.
Neonatal strokes occur in approximately 1 in 4000 births, but this number is likely much higher due to lack of noticeable symptoms at time of birth. They generally present with seizures, but only half to three quarters of cases have identifiable causes. Diagnosis often occurs around 36 hours after onset of neonatal stroke due to the interval between stroke and clinical presentation, if any occurs at all. Neonatal strokes can be confirmed with neuroimaging or neuropathalogical studies, and other various imaging techniques can be used to diagnose neonatal strokes, such as ultrasound, Doppler sonography, computerized tomography (CT) scan, CT angiography, and multimodal MR.
Since oxygen is carried to tissues in the blood, insufficient blood supply causes tissue to become starved of oxygen. In the highly aerobic tissues of the heart and brain, irreversible damage to tissues can occur in as little as 3–4 minutes at body temperature. The kidneys are also quickly damaged by loss of blood flow (renal ischemia). Tissues with slower metabolic rates may undergo irreversible damage after 20 minutes.
Clinical manifestations of acute limb ischemia (which can be summarized as the "six P's") include pain, pallor, pulseless, paresthesia, paralysis, and poikilothermia.
Without immediate intervention, ischemia may progress quickly to tissue necrosis and gangrene within a few hours. Paralysis is a very late sign of acute arterial ischemia and signals the death of nerves supplying the extremity. Foot drop may occur as a result of nerve damage. Because nerves are extremely sensitive to hypoxia, limb paralysis or ischemic neuropathy may persist after revascularization and may be permanent.
Reduced blood flow to the skin layers may result in mottling or uneven, patchy discoloration of the skin
Cerebral edema is excess accumulation of fluid in the intracellular or extracellular spaces of the brain.
The most common presentation of cerebrovascular diseases is an acute stroke, which occurs when blood supply to the brain is compromised. Symptoms of stroke are usually rapid in onset, and may include weakness of one side of the face or body, numbness on one side of the face or body, inability to produce or understand speech, vision changes, and balance difficulties. Hemorrhagic strokes can present with a very severe, sudden headache associated with vomiting, neck stiffness, and decreased consciousness. Symptoms vary depending on the location and the size of the area of involvement of the stroke. Edema, or swelling, of the brain may occur which increases intracranial pressure and may result in brain herniation. A stroke may result in coma or death if it involves key areas of the brain.
Other symptoms of cerebrovascular disease include migraines, seizures, epilepsy, or cognitive decline. However, cerebrovascular disease may go undetected for years until an acute stroke occurs. In addition, patients with some rare congenital cerebrovascular diseases may begin to have these symptoms in childhood.
Early symptoms of high-altitude cerebral edema (HACE) generally correspond with those of moderate to severe acute mountain sickness (AMS). Initial symptoms of HACE commonly include confusion, loss of consciousness, fever, ataxia, photophobia, rapid heart beat, lassitude, and an altered mental state. Sufferers generally attempt to cease physical activities, regardless of their necessity for survival. Severe headaches develop and sufferers lose the ability to sit up. Retinal venous dilation occurs in 59% of people with HACE. Rarer symptoms include brisk deep tendon reflexes, retinal hemorrhages, blurred vision, extension plantar reflexes, and ocular paralysis. Cranial nerve palsies occur in some unusual cases.
In the bestselling 1996 non-fiction book "Into Thin Air: A Personal Account of the Mt. Everest Disaster", Jon Krakauer describes the effects of HACE upon Dale Kruse, a forty-four-year-old dentist and one of the members of Scott Fischer's team:
‘Kruse was having an incredibly difficult time simply trying to dress himself. He put his climbing harness on inside out, threaded it through the fly of his wind suit, and failed to fasten the buckle; fortunately, Fisher and Neal Beidleman noticed the screwup before Kruse started to descend. "If he'd tried to rappel down the ropes like that," says Beidleman, "he would have immediately popped out of his harness and fallen to the bottom of the Lhotse Face."
‘"It was like I was very drunk," Kruse recollects. "I couldn't walk without stumbling, and completely lost the ability to think or speak. It was a really strange feeling. I'd have some word in my mind, but I couldn't figure out how to bring it to my lips. So Scott and Neal had to get me dressed and make sure my harness was on correctly, then Scott lowered me down the fixed ropes." By the time Kruse arrived in Base Camp, he says, "it was still another three or four days before I could walk from my tent to the mess tent without stumbling all over the place."’
Patients with HACE have an elevated white blood cell count, but otherwise their blood count and biochemistry are normal. If a lumbar puncture is performed, it will show normal cerebral spinal fluid and cell counts but an increase in pressure. In one study, CT scans of patients with HACE exhibited ventricle compression and low density in the cerebellum. Only a few autopsies have been performed on fatal cases of HACE; they showed swollen gyri, spongiosis of white matter, and compressed sulci. There was some variation between individuals, and the results may not be typical of HACE deaths.
Red softening is one of the three types of cerebral softening. As its name suggests, certain regions of cerebral softening result in a red color. This is due to a hemorrhagic infarct, in which blood flow is restored to an area of the brain that was previously restricted by an embolism. This is termed a "red infarct" or also known as red softening.
Upon autopsy of several subjects, Dr. Cornelio Fazio found that the most common areas of this type of softening occurred where there was a hemorrhage of the middle cerebral artery or the superior or deep branches to it. The subjects' softened area was not always near the arteries but where the capillaries perfused the brain tissue. The symptoms were similar to that of a stroke.
Stroke presentations which are particularly suggestive of a watershed stroke include bilateral visual loss, stupor, and weakness of the proximal limbs, sparing the face, hands and feet.
White softening is another form of cerebral softening. This type of softening occurs in areas that continue to be poorly perfused, with little to no blood flow. These are known as "pale" or "anemic infarcts" and are areas that contain dead neuronal tissue, which result in a softening of the cerebrum.
Watershed stroke symptoms are due to the reduced blood flow to all parts of the body, specifically the brain, thus leading to brain damage. Initial symptoms, as promoted by the American Stroke Association, are FAST (stroke), representing F = Facial weakness (droop), A = Arm weakness (drift), S = Speech difficulty (slur), and T = Time to act (priority of intervention).
All strokes are considered a medical emergency. Any one of these symptoms, whether seen alone or in combination, should be assumed to be stroke until proven otherwise. Emergency medical help should be sought IMMEDIATELY if any or all of these symptoms are seen or experienced. Early diagnosis and timely medical intervention can drastically reduce the severity of a stroke, limit damage to the brain, improve the chances of a full recovery and reduce recovery times massively.
After the initial stroke, other symptoms depend on the area of the brain affected. If one of the three central nervous system pathways is affected, symptoms can include numbness, reduced sensation, and hyperreflexia.
Most often, the side of the brain damaged results in body defects on the opposite side. Since the cranial nerves originate from the brainstem, damage to this area can lead to defects in the function of these nerves. Symptoms can include altered breathing, problems with balance, drooping of eyelids, and decreased sensation in the face.
Damage to the cerebral cortex may lead to aphasia or confusion and damage to the cerebellum may lead to lack of motor movement.
The onset of the symptoms usually occurs several weeks after the initial hypoxic episode. The hypoxic episode is necessarily severe, usually with an arterial oxygen partial pressure less than 40mmHg. Following the severe hypoxia, the patient typically falls unconscious or into a coma, with the exception of cases of carbon monoxide poisoning. If the patient recovers from this unconscious state, usually within 24 hours, it is typically followed by a successful recovery over a few days (generally 4 to 5). After the short recovery, a lucid period is observed, lasting anywhere from 1 to 4 weeks, in which the patient exhibits no symptoms related to the anoxic episode. It is after this period that the degenerative symptoms begin to appear and rapidly grow in severity.
MRI shows hyperintensities on T2 weighted imaging, localized usually to the parietal and occipital regions.
Cerebrovascular disease includes a variety of medical conditions that affect the blood vessels of the brain and the cerebral circulation. Arteries supplying oxygen and nutrients to the brain are often damaged or deformed in these disorders. The most common presentation of cerebrovascular disease is an ischemic stroke or mini-stroke and sometimes a hemorrhagic stroke. Hypertension (high blood pressure) is the most important contributing risk factor for stroke and cerebrovascular diseases as it can change the structure of blood vessels and result in atherosclerosis. Atherosclerosis narrows blood vessels in the brain, resulting in decreased cerebral perfusion. Other risk factors that contribute to stroke include smoking and diabetes. Narrowed cerebral arteries can lead to ischemic stroke, but continually elevated blood pressure can also cause tearing of vessels, leading to a hemorrhagic stroke.
A stroke usually presents with an abrupt onset of a neurologic deficit - such as hemiplegia (one-sided weakness), numbness, aphasia (language impairment), or ataxia (loss of coordination) - attributable to a focal vascular lesion. The neurologic symptoms manifest within seconds because neurons need a continual supply of nutrients, including glucose and oxygen, that are provided by the blood. Therefore if blood supply to the brain is impeded, injury and energy failure is rapid.
Besides hypertension, there are also many less common causes of cerebrovascular disease, including those that are congenital or idiopathic and include CADASIL, aneurysms, amyloid angiopathy, arteriovenous malformations, fistulas, and arterial dissections. Many of these diseases can be asymptomatic until an acute event, such as a stroke, occurs. Cerebrovascular diseases can also present less commonly with headache or seizures. Any of these diseases can result in vascular dementia due to ischemic damage to the brain.
The symptoms have been known to include apathy, dementia, Parkinsonism, agitation, urinary incontinence, and pseudobulbar palsy, among many other neuropsychiatric symptoms.
Microscopically, extensive hemispheric demyelination and the degeneration of basal ganglia are observed.
Patients can present with sudden increase in blood pressure, acute confusional state, headaches, vomiting, and seizure. Retinal hemorrhages and hard exudates may be present on funduscopic exam. Hypertensive leukoencephalopathy may have concurrent cardiac ischemia and hematuria.
High-altitude cerebral edema (HACE) is a medical condition in which the brain swells with fluid because of the physiological effects of traveling to a high altitude. It generally appears in patients who have acute mountain sickness and involves disorientation, lethargy, and nausea among other symptoms. It occurs when the body fails to acclimatize while ascending to a high altitude.
It appears to be a vasogenic edema (fluid penetration of the blood–brain barrier), although cytotoxic edema (cellular retention of fluids) may play a role as well. Individuals with the condition must immediately descend to a lower altitude or coma and death can occur. Patients are usually given supplemental oxygen and dexamethasone as well.
HACE can be prevented by ascending to heights slowly to allow the body more time to acclimatize. Acetazolamide also helps prevent the condition. Untreated patients usually die within 48 hours. Those who receive treatment may take weeks to fully recover. It is a rare condition, occurring in less than one percent of people who ascend to . First described in 1913, little was known about the cause of the condition until MRI studies were performed in the 1990s.
Reperfusion injury or reperfusion insult, sometimes called ischemia-reperfusion injury (IRI) or reoxygenation injury, is the tissue damage caused when blood supply returns to tissue ("" + "perfusion") after a period of ischemia or lack of oxygen (anoxia or hypoxia). The absence of oxygen and nutrients from blood during the ischemic period creates a condition in which the restoration of circulation results in inflammation and oxidative damage through the induction of oxidative stress rather than (or along with) restoration of normal function.
It is often impossible to identify PVL based on the patient’s physical or behavioral characteristics. The white matter in the periventricular regions is involved heavily in motor control, and so individuals with PVL often exhibit motor problems. However, since healthy newborns (especially premature infants) can perform very few specific motor tasks, early deficits are very difficult to identify. As the individual develops, the areas and extent of problems caused by PVL can begin to be identified; however, these problems are usually found after an initial diagnosis has been made.
The extent of signs is strongly dependent on the extent of white matter damage: minor damage leads to only minor deficits or delays, while significant white matter damage can cause severe problems with motor coordination or organ function. Some of the most frequent signs include delayed motor development, vision deficits, apneas, low heart rates, and seizures.
Delayed motor development of infants affected by PVL has been demonstrated in multiple studies. One of the earliest markers of developmental delays can be seen in the leg movements of affected infants, as early as one month of age. Those with white matter injury often exhibit "tight coupling" of leg joints (all extending or all flexing) much longer than other infants (premature and full-term). Additionally, infants with PVL may not be able to assume the same positions for sleeping, playing, and feeding as premature or full-term children of the same age. These developmental delays can continue throughout infancy, childhood, and adulthood.