Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Coughing and rattling are common, most severe in young, such as broilers, and rapidly spreading in chickens confined or at proximity. Morbidity is 100% in non-vaccinated flocks. Mortality varies according to the virus strain (up to 60% in non-vaccinated flocks). Respiratory signs will subdue within two weeks. However, for some strains, a kidney infection may follow, causing mortality by toxemia. Younger chickens may die of tracheal occlusion by mucus (lower end) or by kidney failure. The infection may prolong in the cecal tonsils.
In laying hens, there can be transient respiratory signs, but mortality may be negligible. However, egg production drops sharply. A great percentage of produced eggs are misshapen and discolored. Many laid eggs have a thin or soft shell and poor albumen (watery), and are not marketable or proper for incubation. Normally-colored eggs, indicative of normal shells for instance in brown chickens, have a normal hatchability.
Egg yield curve may never return to normal. Milder strains may allow normal production after around eight weeks.
The incubation period is 5–7 days (with a range of 3–10). Symptoms can include a harsh, dry cough, retching, sneezing, snorting, gagging or vomiting in response to light pressing of the trachea or after excitement or exercise. The presence of a fever varies from case to case.
Avian infectious bronchitis (IB) is an acute and highly contagious respiratory disease of chickens. The disease is caused by avian infectious bronchitis virus (IBV), a coronavirus, and characterized by respiratory signs including gasping, coughing, sneezing, tracheal rales, and nasal discharge. In young chickens, severe respiratory distress may occur. In layers, respiratory distress, nephritis, decrease in egg production, and loss of internal (watery egg white) and external (fragile, soft, irregular or rough shells, shell-less) egg quality are reported.
Bovine respiratory disease (BRD) is the most common and costly disease affecting beef cattle in the world. It is a complex, bacterial infection that causes pneumonia in calves and can possibly be fatal. The infection is usually a sum of three codependent factors: stress, an underlying viral infection, and a new bacterial infection.
The diagnosis of the disease is complex since there are multiple possible causes.
The disease manifests itself most often in calves within four weeks of weaning, when calves are sorted and often sold to different farms. This gives it a common nickname, "shipping fever." It is not known whether the stress itself, co-mingling, or travel conditions are at most to blame, and while studies have identified general stressing factors like transport and cold weather conditions, there is still no conclusive evidence on more specific factors (e.g. distance, transport mode, temperature, or temperature volatility.
BRD often develops within 4 weeks of cattle transport. The biggest sign of the pneumonia that BRD causes is depression, shown as droopy ears, dull eyes, and social isolation. Additionally, most cows will have a fever above . Other symptoms include coughing, decreased appetite, and breathing difficulty.
Porcine enzootic pneumonia is caused by "Mycoplasma hyopneumoniae" and describes an important respiratory disease of pigs.
It is part of the Porcine Respiratory Disease Complex along with Swine Influenza, PRRS and Porcine circovirus 2, and even though on its own it is quite a mild disease, it predisposes to secondary infections with organisms such as "Pasteurella multocida".
Clinical signs are most commonly seen in pigs over 8 weeks of age, and the disease occurs worldwide. Transmission is horizontal and vertical from sows.
Pigs usually cough and may show more severe respiratory signs if secondary bacteria have invaded. This may lead to signs of pneumonia and systemic involvement.
Diagnosis relies on culture and isolation of the bacteria but this can be challenging.
PCR, ELISA, fluorescent antibody testing and post-mortem findings all help in making the diagnosis.
An airborne disease is any disease that is caused by pathogens that can be transmitted through the air. Such diseases include many of considerable importance both in human and veterinary medicine. The relevant pathogens may be viruses, bacteria, or fungi, and they may be spread through breathing, talking, coughing, sneezing, raising of dust, spraying of liquids, toilet flushing or any activities which generates aerosol particles or droplets. Human airborne diseases do not include conditions caused by air pollution such as volatile organic compounds (VOCs), gasses and any airborne particles, though their study and prevention may help inform the science of airborne disease transmission.
Although kennel cough is considered to be a multifactorial infection, there are two main forms. The first is more mild and is caused by B. bronchiseptica and canine parainfluenza virus infections, without complications from canine distemper virus (CDV) or canine adenovirus (CAV). This form occurs most regularly in autumn, and can be distinguished by symptoms such as a retching cough and vomiting. The second form has a more complex combination of causative organisms including CDV and CAV. It typically occurs in dogs that have not been vaccinated and it is not seasonal. Symptoms are more severe than the first form, and may include rhinitis, conjunctivitis, and fever in addition to a hacking cough.
"Pharyngoconjunctival fever" is a specific presentation of adenovirus infection, manifested as:
- high fever that lasts 4–5 days
- pharyngitis (sore throat)
- conjunctivitis (inflamed eyes, usually without pus formation like pink eye)
- enlargement of the lymph nodes of the neck
- headache, malaise, and weakness
- Incubation period of 5–9 days
It usually occurs in the age group 5–18. It is often found in summer camps and during the spring and fall in schools. In Japan, the illness is commonly referred to as "pool fever" as it is often spread via public swimming pools.
Apart from respiratory involvement, illnesses and presentations of adenovirus include gastroenteritis, conjunctivitis, cystitis, and rash illness. Symptoms of respiratory illness caused by adenovirus infection range from the common cold syndrome to pneumonia, croup, and bronchitis. Patients with compromised immune systems are especially susceptible to severe complications of adenovirus infection. Acute respiratory disease (ARD), first recognized among military recruits during World War II, can be caused by adenovirus infections during conditions of crowding and stress.
The causes of influenza-like illness range from benign self-limited illnesses such as gastroenteritis, rhinoviral disease, and influenza, to severe, sometimes life-threatening, diseases such as meningitis, sepsis, and leukemia.
Influenza-like illness (ILI), also known as acute respiratory infection (ARI) and flu-like syndrome/symptoms, is a medical diagnosis of "possible" influenza or other illness causing a set of common symptoms.
Symptoms commonly include fever, shivering, chills, malaise, dry cough, loss of appetite, body aches, and nausea, typically in connection with a sudden onset of illness. In most cases, the symptoms are caused by cytokines released by immune system activation, and are thus relatively non-specific.
Common causes of ILI include the common cold and influenza, which tends to be less common but more severe than the common cold. Less-common causes include side effects of many drugs and manifestations of many other diseases.
Early reports compared the virus to severe acute respiratory syndrome (SARS), and it has been referred to as Saudi Arabia's SARS-like virus. The first person, in June 2012, had a "seven-day history of fever, cough, expectoration, and shortness of breath." One review of 47 laboratory confirmed cases in Saudi Arabia gave the most common presenting symptoms as fever in 98%, cough in 83%, shortness of breath in 72% and myalgia in 32% of people. There were also frequent gastrointestinal symptoms with diarrhea in 26%, vomiting in 21%, abdominal pain in 17% of people. 72% of people required mechanical ventilation. There were also 3.3 males for every female. One study of a hospital-based outbreak of MERS had an estimated incubation period of 5.5 days (95% confidence interval 1.9 to 14.7 days). MERS can range from asymptomatic disease to severe pneumonia leading to acute respiratory distress syndrome (ARDS). Kidney failure, disseminated intravascular coagulation (DIC), and pericarditis have also been reported.
Feline viral rhinotracheitis (FVR) is an upper respiratory or pulmonary infection of cats caused by "feline herpesvirus 1", of the family "Herpesviridae". It is also commonly referred to as feline influenza, feline coryza, and feline pneumonia but, as these terms describe other very distinct collections of respiratory symptoms, they are misnomers for the condition. Viral respiratory diseases in cats can be serious, especially in catteries and kennels. Causing one-half of the respiratory diseases in cats, FVR is the most important of these diseases and is found worldwide. The other important cause of feline respiratory disease is "feline calicivirus".
FVR is very contagious and can cause severe disease, including death from pneumonia in young kittens. It can cause flat-chested kitten syndrome, but most evidence for this is anecdotal. All members of the "Felidae" family are susceptible to FVR; in fact, FHV-1 has caused a fatal encephalitis in lions in Germany.
Cat flu is the common name for a feline upper respiratory tract disease. While feline upper respiratory disease can be caused by several different pathogens, there are few symptoms that they have in common.
While Avian Flu can also infect cats, Cat flu is generally a misnomer, since it usually does not refer to an infection by an influenza virus. Instead, it is a syndrome, a term referring to the fact that patients display a number of symptoms that can be caused by one or more of the following infectious agents (pathogens):
1. Feline herpes virus causing feline viral rhinotracheitis (cat common cold, this is the disease that is closely similar to cat flu)
2. Feline calicivirus—(cat respiratory disease)
3. "Bordetella bronchiseptica"—(cat kennel cough)
4. "Chlamydophila felis"—(chlamydia)
In South Africa the term cat flu is also used to refer to Canine Parvo Virus. This is misleading, as transmission of the Canine Parvo Virus rarely involves cats.
Airborne diseases include any that are caused via transmission through the air. Many airborne diseases are of great medical importance. The pathogens transmitted may be any kind of microbe, and they may be spread in aerosols, dust or liquids. The aerosols might be generated from sources of infection such as the bodily secretions of an infected animal or person, or biological wastes such as accumulate in lofts, caves, garbage and the like. Such infected aerosols may stay suspended in air currents long enough to travel for considerable distances, though the rate of infection decreases sharply with the distance between the source and the organism infected.
Airborne pathogens or allergens often cause inflammation in the nose, throat, sinuses and the lungs. This is caused by the inhalation of these pathogens that affect a person's respiratory system or even the rest of the body. Sinus congestion, coughing and sore throats are examples of inflammation of the upper respiratory air way due to these airborne agents. Air pollution plays a significant role in airborne diseases which is linked to asthma. Pollutants are said to influence lung function by increasing air way inflammation.
Many common infections can spread by airborne transmission at least in some cases, including: Anthrax (inhalational), Chickenpox, Influenza, Measles, Smallpox, Cryptococcosis, and Tuberculosis.
Airborne diseases can also affect non-humans. For example, Newcastle disease is an avian disease that affects many types of domestic poultry worldwide which is transmitted via airborne contamination.
Often, airborne pathogens or allergens cause inflammation in the nose, throat, sinuses, and the upper airway lungs. Upper airway inflammation causes coughing congestion, and sore throat. This is caused by the inhalation of these pathogens that affect a person's respiratory system or even the rest of the body. Sinus congestion, coughing and sore throats are examples of inflammation of the upper respiratory air way due to these airborne agents.
Initial signs of FVR include coughing, sneezing, nasal discharge, conjunctivitis, and sometimes fever (up to 106) and loss of appetite. These usually resolve within four to seven days, but secondary bacterial infections can cause the persistence of clinical signs for weeks. Frontal sinusitis and empyema can also result.
FHV-1 also has a predilection for corneal epithelium, resulting in corneal ulcers, often pinpoint or dendritic in shape. Other ocular signs of FHV-1 infection include conjunctivitis, keratitis, keratoconjunctivitis sicca (decreased tear production), and corneal sequestra. Infection of the nasolacrimal duct can result in chronic epiphora (excess tearing). Ulcerative skin disease can also result from FHV-1 infection. FHV-1 can also cause abortion in pregnant queens, usually at the sixth week of gestation, although this may be due to systemic effects of the infection rather than the virus directly.
In chronic nasal and sinus disease of cats, FHV-1 may play more of an initiating role than an ongoing cause. Infection at an early age may permanently damage nasal and sinus tissue, causing a disruption of ciliary clearance of mucus and bacteria, and predispose these cats to chronic bacterial infections.
Middle East respiratory syndrome (MERS), also known as camel flu, is a viral respiratory infection caused by the MERS-coronavirus (MERS-CoV). Symptoms may range from mild to severe. They include fever, cough, diarrhea, and shortness of breath. Disease is typically more severe in those with other health problems.
MERS-CoV is a betacoronavirus derived from bats. Camels have been shown to have antibodies to MERS-CoV but the exact source of infection in camels has not been identified. Camels are believed to be involved in its spread to humans but it is unclear how. Spread between humans typically requires close contact with an infected person. Its spread is uncommon outside of hospitals. Thus, its risk to the global population is currently deemed to be fairly low.
As of 2016 there is no specific vaccine or treatment for the disease. However, a number of antiviral medications are currently being studied. The World Health Organization recommends that those who come in contact with camels wash their hands frequently and do not touch sick camels. They also recommend that camel products be appropriately cooked. Among those who are infected treatments that help with the symptoms may be given.
Just under 2000 cases have been reported as of April 4, 2017. About 36% of those who are diagnosed with the disease die from it. The overall risk of death may be lower as those with mild symptoms may be undiagnosed. The first identified case occurred in 2012 in Saudi Arabia and most cases have occurred in the Arabian Peninsula. A strain of MERS-CoV known as HCoV-EMC/2012 found in the first infected person in London in 2012 was found to have a 100% match to Egyptian tomb bats. A large outbreak occurred in the Republic of Korea in 2015.
In a typical case, an infant under two years of age develops cough, wheeze, and shortness of breath over one or two days. Crackles or wheeze are typical findings on listening to the chest with a stethoscope. The infant may be breathless for several days. After the acute illness, it is common for the airways to remain sensitive for several weeks, leading to recurrent cough and wheeze.
Some signs of severe disease include:
- poor feeding (less than half of usual fluid intake in preceding 24 hours)
- significantly decreased activity
- history of stopping breathing
- respiratory rate >70/min
- presence of nasal flaring and/or grunting
- severe chest wall recession (Hoover's sign)
- bluish skin
A URI may be classified by the area inflamed.
Rhinitis affects the nasal mucosa, while rhinosinusitis or sinusitis affects the nose and paranasal sinuses, including frontal, ethmoid, maxillary, and sphenoid sinuses. Nasopharyngitis (rhinopharyngitis or the common cold) affects the nares, pharynx, hypopharynx, uvula, and tonsils generally. Without involving the nose, pharyngitis inflames the pharynx, hypopharynx, uvula, and tonsils. Similarly, epiglottitis (supraglottitis) inflames the superior portion of the larynx and supraglottic area; laryngitis is in the larynx; laryngotracheitis is in the larynx, trachea, and subglottic area; and tracheitis is in the trachea and subglottic area.
In uncomplicated colds, cough and nasal discharge may persist for 14 days or more even after other symptoms have resolved.
Acute upper respiratory tract infections include rhinitis, pharyngitis/tonsillitis and laryngitis often referred to as a common cold, and their complications: sinusitis, ear infection and sometimes bronchitis (though bronchi are generally classified as part of the lower respiratory tract.) Symptoms of URTIs commonly include cough, sore throat, runny nose, nasal congestion, headache, low-grade fever, facial pressure and sneezing.
Symptoms of rhinovirus in children usually begin 1–3 days after exposure. The illness usually lasts 7–10 more days.
Color or consistency changes in mucous discharge to yellow, thick, or green are the natural course of viral upper respiratory tract infection and not an indication for antibiotics.
Group A beta hemolytic streptococcal pharyngitis/tonsillitis (strep throat) typically presents with a sudden onset of sore throat, pain with swallowing and fever. Strep throat does not usually cause runny nose, voice changes, or cough.
Pain and pressure of the ear caused by a middle ear infection (otitis media) and the reddening of the eye caused by viral conjunctivitis are often associated with upper respiratory infections.
The most common form of the disease is the head and eye form. Typical symptoms of this form include fever, depression, discharge from the eyes and nose, lesions of the buccal cavity and muzzle, swelling of the lymph nodes, opacity of the corneas leading to blindness, inappetance and diarrhea. Some animals have neurologic signs, such as ataxia, nystagmus, and head pressing. Peracute, alimentary and cutaneous clinical disease patterns have also been described. Death usually occurs within ten days. The mortality rate in symptomatic animals is 90 to 100 percent. Treatment is supportive only.
The term "bronchiolitis" generally refers to inflammation of the bronchioles. DPB is classified as a form of "primary bronchiolitis", which means that the underlying cause of bronchiolitis is originating from or is confined to the bronchioles. Along with DPB, additional forms of primary bronchiolitis include bronchiolitis obliterans, follicular bronchiolitis, respiratory bronchiolitis, mineral dust airway disease, and a number of others. Unlike DPB, bronchiolitis that is not considered "primary" would be associated with diseases of the larger airways, such as chronic bronchitis.
Symptoms of DPB include chronic sinusitis (inflamed paranasal sinuses), wheezing, crackles (respiratory sounds made by obstructions such as phlegm and secretions in the lungs), dyspnea (shortness of breath), and a severe cough that yields large amounts of sputum (coughed-up phlegm). There may be pus in the sputum, and affected individuals may have fever. Typical signs of DPB progression include (enlargement) of the bronchiolar passages and hypoxemia (low levels of oxygen in the blood). If DPB is left untreated, bronchiectasis will occur; it is characterized by dilation and thickening of the walls of the bronchioles, inflammatory damage to respiratory and terminal bronchioles, and pooling of mucus in the lungs. DPB is associated with progressive respiratory failure, hypercapnia (increased levels of carbon dioxide in the blood), and can eventually lead to pulmonary hypertension (high blood pressure in the pulmonary vein and artery) and cor pulmonale (dilation of the right ventricle of the heart, or "right heart failure").